Spaces:
Runtime error
Runtime error
bugfix
Browse files
app.py
CHANGED
@@ -112,30 +112,30 @@ def main(button, choose_context):
|
|
112 |
df_topic_keywords["Topics"] = topics
|
113 |
df_topic_keywords
|
114 |
|
115 |
-
#
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
|
130 |
-
|
131 |
-
|
132 |
|
133 |
-
|
134 |
-
|
135 |
|
136 |
-
#
|
137 |
-
|
138 |
-
|
139 |
|
140 |
def apply_predict_topic(text):
|
141 |
text = [text]
|
@@ -193,8 +193,8 @@ with gr.Blocks() as demo:
|
|
193 |
choices=['comment', 'sup comment', 'sup comment + comment'], value='sup comment'
|
194 |
)
|
195 |
plot = gr.Plot(label="Plot")
|
196 |
-
button.change(main, inputs=[
|
197 |
-
demo.load(main, inputs=[
|
198 |
|
199 |
|
200 |
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
|
|
112 |
df_topic_keywords["Topics"] = topics
|
113 |
df_topic_keywords
|
114 |
|
115 |
+
# Define function to predict topic for a given text document.
|
116 |
+
nlp = spacy.load('en_core_web_sm', disable=['parser', 'ner'])
|
117 |
+
def predict_topic(text, nlp=nlp):
|
118 |
+
global sent_to_words
|
119 |
+
global lemmatization
|
120 |
+
# Step 1: Clean with simple_preprocess
|
121 |
+
mytext_2 = list(sent_to_words(text))
|
122 |
+
# Step 2: Lemmatize
|
123 |
+
mytext_3 = lemmatization(mytext_2, allowed_postags=['NOUN', 'ADJ', 'VERB', 'ADV'])
|
124 |
+
# Step 3: Vectorize transform
|
125 |
+
mytext_4 = vectorizer.transform(mytext_3)
|
126 |
+
# Step 4: LDA Transform
|
127 |
+
topic_probability_scores = best_lda_model.transform(mytext_4)
|
128 |
+
topic = df_topic_keywords.iloc[np.argmax(topic_probability_scores), 1:14].values.tolist()
|
129 |
|
130 |
+
# Step 5: Infer Topic
|
131 |
+
infer_topic = df_topic_keywords.iloc[np.argmax(topic_probability_scores), -1]
|
132 |
|
133 |
+
#topic_guess = df_topic_keywords.iloc[np.argmax(topic_probability_scores), Topics]
|
134 |
+
return infer_topic, topic, topic_probability_scores
|
135 |
|
136 |
+
# Predict the topic
|
137 |
+
mytext = ["This is a test of a random topic where I talk about politics"]
|
138 |
+
infer_topic, topic, prob_scores = predict_topic(text = mytext)
|
139 |
|
140 |
def apply_predict_topic(text):
|
141 |
text = [text]
|
|
|
193 |
choices=['comment', 'sup comment', 'sup comment + comment'], value='sup comment'
|
194 |
)
|
195 |
plot = gr.Plot(label="Plot")
|
196 |
+
button.change(main, inputs=[choose_context], outputs=[plot])
|
197 |
+
demo.load(main, inputs=[choose_context], outputs=[plot])
|
198 |
|
199 |
|
200 |
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|