DanielSc4 commited on
Commit
1ab11d4
·
1 Parent(s): 5affbbc
Files changed (1) hide show
  1. app.py +23 -23
app.py CHANGED
@@ -112,30 +112,30 @@ def main(button, choose_context):
112
  df_topic_keywords["Topics"] = topics
113
  df_topic_keywords
114
 
115
- # # Define function to predict topic for a given text document.
116
- # nlp = spacy.load('en_core_web_sm', disable=['parser', 'ner'])
117
- # def predict_topic(text, nlp=nlp):
118
- # global sent_to_words
119
- # global lemmatization
120
- # # Step 1: Clean with simple_preprocess
121
- # mytext_2 = list(sent_to_words(text))
122
- # # Step 2: Lemmatize
123
- # mytext_3 = lemmatization(mytext_2, allowed_postags=['NOUN', 'ADJ', 'VERB', 'ADV'])
124
- # # Step 3: Vectorize transform
125
- # mytext_4 = vectorizer.transform(mytext_3)
126
- # # Step 4: LDA Transform
127
- # topic_probability_scores = best_lda_model.transform(mytext_4)
128
- # topic = df_topic_keywords.iloc[np.argmax(topic_probability_scores), 1:14].values.tolist()
129
 
130
- # # Step 5: Infer Topic
131
- # infer_topic = df_topic_keywords.iloc[np.argmax(topic_probability_scores), -1]
132
 
133
- # #topic_guess = df_topic_keywords.iloc[np.argmax(topic_probability_scores), Topics]
134
- # return infer_topic, topic, topic_probability_scores
135
 
136
- # # Predict the topic
137
- # mytext = ["This is a test of a random topic where I talk about politics"]
138
- # infer_topic, topic, prob_scores = predict_topic(text = mytext)
139
 
140
  def apply_predict_topic(text):
141
  text = [text]
@@ -193,8 +193,8 @@ with gr.Blocks() as demo:
193
  choices=['comment', 'sup comment', 'sup comment + comment'], value='sup comment'
194
  )
195
  plot = gr.Plot(label="Plot")
196
- button.change(main, inputs=[button, choose_context], outputs=[plot])
197
- demo.load(main, inputs=[button], outputs=[plot])
198
 
199
 
200
  # iface = gr.Interface(fn=greet, inputs="text", outputs="text")
 
112
  df_topic_keywords["Topics"] = topics
113
  df_topic_keywords
114
 
115
+ # Define function to predict topic for a given text document.
116
+ nlp = spacy.load('en_core_web_sm', disable=['parser', 'ner'])
117
+ def predict_topic(text, nlp=nlp):
118
+ global sent_to_words
119
+ global lemmatization
120
+ # Step 1: Clean with simple_preprocess
121
+ mytext_2 = list(sent_to_words(text))
122
+ # Step 2: Lemmatize
123
+ mytext_3 = lemmatization(mytext_2, allowed_postags=['NOUN', 'ADJ', 'VERB', 'ADV'])
124
+ # Step 3: Vectorize transform
125
+ mytext_4 = vectorizer.transform(mytext_3)
126
+ # Step 4: LDA Transform
127
+ topic_probability_scores = best_lda_model.transform(mytext_4)
128
+ topic = df_topic_keywords.iloc[np.argmax(topic_probability_scores), 1:14].values.tolist()
129
 
130
+ # Step 5: Infer Topic
131
+ infer_topic = df_topic_keywords.iloc[np.argmax(topic_probability_scores), -1]
132
 
133
+ #topic_guess = df_topic_keywords.iloc[np.argmax(topic_probability_scores), Topics]
134
+ return infer_topic, topic, topic_probability_scores
135
 
136
+ # Predict the topic
137
+ mytext = ["This is a test of a random topic where I talk about politics"]
138
+ infer_topic, topic, prob_scores = predict_topic(text = mytext)
139
 
140
  def apply_predict_topic(text):
141
  text = [text]
 
193
  choices=['comment', 'sup comment', 'sup comment + comment'], value='sup comment'
194
  )
195
  plot = gr.Plot(label="Plot")
196
+ button.change(main, inputs=[choose_context], outputs=[plot])
197
+ demo.load(main, inputs=[choose_context], outputs=[plot])
198
 
199
 
200
  # iface = gr.Interface(fn=greet, inputs="text", outputs="text")