Spaces:
Runtime error
Runtime error
now working
Browse files
app.py
CHANGED
@@ -56,7 +56,7 @@ def get_lda(n_components):
|
|
56 |
|
57 |
print('[x] Init LDA model')
|
58 |
lda_model = LatentDirichletAllocation(
|
59 |
-
n_components=
|
60 |
max_iter=10,
|
61 |
learning_method='online',
|
62 |
random_state=100,
|
@@ -65,7 +65,7 @@ def get_lda(n_components):
|
|
65 |
n_jobs = -1,
|
66 |
verbose=1,
|
67 |
)
|
68 |
-
|
69 |
print('[x] Fitting LDA model')
|
70 |
lda_output = lda_model.fit_transform(data_vectorized)
|
71 |
print(lda_model) # Model attributes
|
@@ -87,13 +87,16 @@ def get_lda(n_components):
|
|
87 |
print('[x] Getting LDA output')
|
88 |
lda_output = best_lda_model.transform(data_vectorized)
|
89 |
|
|
|
90 |
topicnames = ["Topic" + str(i) for i in range(best_lda_model.n_components)]
|
91 |
docnames = ["Doc" + str(i) for i in range(len(data))]
|
92 |
df_document_topic = pd.DataFrame(np.round(lda_output, 2), columns=topicnames, index=docnames)
|
93 |
|
|
|
94 |
dominant_topic = np.argmax(df_document_topic.values, axis=1)
|
95 |
df_document_topic["dominant_topic"] = dominant_topic
|
96 |
|
|
|
97 |
# Topic-Keyword Matrix
|
98 |
df_topic_keywords = pd.DataFrame(best_lda_model.components_)
|
99 |
df_topic_keywords
|
@@ -101,6 +104,7 @@ def get_lda(n_components):
|
|
101 |
df_topic_keywords.columns = vectorizer.get_feature_names_out()
|
102 |
df_topic_keywords.index = topicnames
|
103 |
|
|
|
104 |
# Show top n keywords for each topic
|
105 |
def show_topics(vectorizer=vectorizer, lda_model=lda_model, n_words=20):
|
106 |
keywords = np.array(vectorizer.get_feature_names_out())
|
@@ -122,6 +126,7 @@ def get_lda(n_components):
|
|
122 |
df_topic_keywords["Topics"] = topics
|
123 |
df_topic_keywords
|
124 |
|
|
|
125 |
# Define function to predict topic for a given text document.
|
126 |
def predict_topic(text, nlp=nlp):
|
127 |
global sent_to_words
|
@@ -142,9 +147,9 @@ def get_lda(n_components):
|
|
142 |
#topic_guess = df_topic_keywords.iloc[np.argmax(topic_probability_scores), Topics]
|
143 |
return infer_topic, topic, topic_probability_scores
|
144 |
|
145 |
-
# Predict the topic
|
146 |
-
mytext = ["This is a test of a random topic where I talk about politics"]
|
147 |
-
infer_topic, topic, prob_scores = predict_topic(text = mytext, nlp=nlp)
|
148 |
|
149 |
def apply_predict_topic(text):
|
150 |
text = [text]
|
@@ -153,16 +158,60 @@ def get_lda(n_components):
|
|
153 |
|
154 |
df["Topic_key_word"] = df['comment'].apply(apply_predict_topic)
|
155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
-
|
158 |
-
|
|
|
159 |
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
irony_percs = {
|
167 |
t: [
|
168 |
len(
|
@@ -175,7 +224,7 @@ def get_lda(n_components):
|
|
175 |
}
|
176 |
width = 0.9
|
177 |
|
178 |
-
|
179 |
plt.axhline(0.5, color = 'red', ls=":", alpha = .3)
|
180 |
|
181 |
bottom = np.zeros(len(subreddits))
|
@@ -187,9 +236,11 @@ def get_lda(n_components):
|
|
187 |
|
188 |
ax.set_title("Perc of topics for each subreddit")
|
189 |
ax.legend(loc="upper right")
|
190 |
-
plt.xticks(rotation=
|
|
|
|
|
191 |
|
192 |
-
return
|
193 |
|
194 |
|
195 |
# def main():
|
@@ -202,18 +253,20 @@ with gr.Blocks() as demo:
|
|
202 |
gr.Markdown("### Questo 猫 un sottotitolo")
|
203 |
# gradio.Dataframe(路路路)
|
204 |
|
205 |
-
n_comp = gr.Slider(2, 25, value=5, step = 1, label="N components", info="Scegli il numero di componenti per LDA"),
|
206 |
|
207 |
btn = gr.Button(value="Submit")
|
208 |
-
|
209 |
-
plot = gr.Plot(label="Plot")
|
210 |
|
211 |
-
btn.click(
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
|
|
|
|
|
|
|
|
|
|
217 |
|
218 |
|
219 |
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
|
|
56 |
|
57 |
print('[x] Init LDA model')
|
58 |
lda_model = LatentDirichletAllocation(
|
59 |
+
n_components=n_components,
|
60 |
max_iter=10,
|
61 |
learning_method='online',
|
62 |
random_state=100,
|
|
|
65 |
n_jobs = -1,
|
66 |
verbose=1,
|
67 |
)
|
68 |
+
|
69 |
print('[x] Fitting LDA model')
|
70 |
lda_output = lda_model.fit_transform(data_vectorized)
|
71 |
print(lda_model) # Model attributes
|
|
|
87 |
print('[x] Getting LDA output')
|
88 |
lda_output = best_lda_model.transform(data_vectorized)
|
89 |
|
90 |
+
print('[x] Assigning topics')
|
91 |
topicnames = ["Topic" + str(i) for i in range(best_lda_model.n_components)]
|
92 |
docnames = ["Doc" + str(i) for i in range(len(data))]
|
93 |
df_document_topic = pd.DataFrame(np.round(lda_output, 2), columns=topicnames, index=docnames)
|
94 |
|
95 |
+
print('[x] Checking dominant topics')
|
96 |
dominant_topic = np.argmax(df_document_topic.values, axis=1)
|
97 |
df_document_topic["dominant_topic"] = dominant_topic
|
98 |
|
99 |
+
|
100 |
# Topic-Keyword Matrix
|
101 |
df_topic_keywords = pd.DataFrame(best_lda_model.components_)
|
102 |
df_topic_keywords
|
|
|
104 |
df_topic_keywords.columns = vectorizer.get_feature_names_out()
|
105 |
df_topic_keywords.index = topicnames
|
106 |
|
107 |
+
print('[x] Computing word-topic association')
|
108 |
# Show top n keywords for each topic
|
109 |
def show_topics(vectorizer=vectorizer, lda_model=lda_model, n_words=20):
|
110 |
keywords = np.array(vectorizer.get_feature_names_out())
|
|
|
126 |
df_topic_keywords["Topics"] = topics
|
127 |
df_topic_keywords
|
128 |
|
129 |
+
print('[x] Predicting dominant topic for each document')
|
130 |
# Define function to predict topic for a given text document.
|
131 |
def predict_topic(text, nlp=nlp):
|
132 |
global sent_to_words
|
|
|
147 |
#topic_guess = df_topic_keywords.iloc[np.argmax(topic_probability_scores), Topics]
|
148 |
return infer_topic, topic, topic_probability_scores
|
149 |
|
150 |
+
# # Predict the topic
|
151 |
+
# mytext = ["This is a test of a random topic where I talk about politics"]
|
152 |
+
# infer_topic, topic, prob_scores = predict_topic(text = mytext, nlp=nlp)
|
153 |
|
154 |
def apply_predict_topic(text):
|
155 |
text = [text]
|
|
|
158 |
|
159 |
df["Topic_key_word"] = df['comment'].apply(apply_predict_topic)
|
160 |
|
161 |
+
print('[x] Generating plot [1]')
|
162 |
+
print('Percentuale di commenti ironici per ogni topic')
|
163 |
+
perc_topic_irony = {}
|
164 |
+
for t in topics:
|
165 |
+
total_0label = sum((df.label == 1) & (df.Topic_key_word == t))
|
166 |
+
if total_0label != 0:
|
167 |
+
total_X_topic = df.Topic_key_word.value_counts()[t]
|
168 |
+
else:
|
169 |
+
total_0label, total_X_topic = 0, 0.001 # Non ci cono topic nel dataset
|
170 |
+
perc_topic_irony[t] = total_0label / total_X_topic
|
171 |
+
print(f'{t} w/ label 1: {total_0label}/{total_X_topic} ({total_0label / total_X_topic * 100 :.2f}%)')
|
172 |
+
|
173 |
+
fig1, ax = plt.subplots(figsize = (10, 7))
|
174 |
+
bottom = np.zeros(len(perc_topic_irony))
|
175 |
+
width = 0.9
|
176 |
|
177 |
+
ax.bar(perc_topic_irony.keys(), perc_topic_irony.values(), width, label = 'sarcastic')
|
178 |
+
comp = list(map(lambda x: 1 - x if x > 0 else 0, perc_topic_irony.values()))
|
179 |
+
ax.bar(perc_topic_irony.keys(), comp, width, bottom=list(perc_topic_irony.values()), label = 'not sarcastic')
|
180 |
|
181 |
+
ax.set_title("% of sarcastic comments for each topic")
|
182 |
+
plt.xticks(rotation=70)
|
183 |
+
plt.legend()
|
184 |
+
plt.axhline(0.5, color = 'red', ls=":")
|
185 |
+
|
186 |
+
# Should this be a parameter?
|
187 |
+
# Max number of biggest subreddits to analyse
|
188 |
+
n_top_subreddit_to_analyse = 20
|
189 |
+
|
190 |
+
# probably not necessary (?) To drop eventually if log are to much cluttered!
|
191 |
+
print('Percentage of each topic for each subreddit')
|
192 |
+
weight_counts = {}
|
193 |
+
for t in topics:
|
194 |
+
weight_counts[t] = []
|
195 |
+
for subreddit in df['subreddit'].value_counts().index[:n_top_subreddit_to_analyse]: # first 10 big subreddits
|
196 |
+
if sum(df[df.Topic_key_word == t].subreddit == subreddit) > 0: # se ci sono subreddit per il topic t (almeno una riga nel df)
|
197 |
+
perc_sub = df[df.Topic_key_word == t]['subreddit'].value_counts()[subreddit] / df['subreddit'].value_counts()[subreddit]
|
198 |
+
else:
|
199 |
+
perc_sub = 0
|
200 |
+
weight_counts[t].append(perc_sub)
|
201 |
+
print(f'Perc of topic {t} in subreddit {subreddit}: {perc_sub * 100:.2f}')
|
202 |
+
print()
|
203 |
+
|
204 |
+
|
205 |
+
print('[x] Generating plot [2]')
|
206 |
+
# plot
|
207 |
+
subreddits = list(df.subreddit.value_counts().index)[:n_top_subreddit_to_analyse]
|
208 |
|
209 |
+
# weight_counts = {
|
210 |
+
# t: [
|
211 |
+
# df[df.Topic_key_word == t].subreddit.value_counts()[subreddit] / df.subreddit.value_counts()[subreddit] for subreddit in subreddits
|
212 |
+
# ] for t in topics
|
213 |
+
# }
|
214 |
+
|
215 |
irony_percs = {
|
216 |
t: [
|
217 |
len(
|
|
|
224 |
}
|
225 |
width = 0.9
|
226 |
|
227 |
+
fig2, ax = plt.subplots(figsize = (10, 7))
|
228 |
plt.axhline(0.5, color = 'red', ls=":", alpha = .3)
|
229 |
|
230 |
bottom = np.zeros(len(subreddits))
|
|
|
236 |
|
237 |
ax.set_title("Perc of topics for each subreddit")
|
238 |
ax.legend(loc="upper right")
|
239 |
+
plt.xticks(rotation=50)
|
240 |
+
|
241 |
+
print('[v] All looking good!')
|
242 |
|
243 |
+
return df_topic_keywords, fig1, fig2
|
244 |
|
245 |
|
246 |
# def main():
|
|
|
253 |
gr.Markdown("### Questo 猫 un sottotitolo")
|
254 |
# gradio.Dataframe(路路路)
|
255 |
|
|
|
256 |
|
257 |
btn = gr.Button(value="Submit")
|
|
|
|
|
258 |
|
259 |
+
btn.click(
|
260 |
+
get_lda,
|
261 |
+
inputs=[
|
262 |
+
gr.Slider(2, 25, value=5, step = 1, label="N components", info="Scegli il numero di componenti per LDA"),
|
263 |
+
],
|
264 |
+
outputs=[
|
265 |
+
gr.DataFrame(),
|
266 |
+
gr.Plot(label="Plot 1"),
|
267 |
+
gr.Plot(label="Plot 2"),
|
268 |
+
]
|
269 |
+
)
|
270 |
|
271 |
|
272 |
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|