Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,30 @@
|
|
1 |
# app.py
|
2 |
-
# π GIfty β Smart Gift Recommender (
|
3 |
-
# Dataset: ckandemir/amazon-products (
|
4 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
import os, re, random
|
7 |
-
from typing import Dict, List
|
|
|
8 |
import numpy as np
|
9 |
import pandas as pd
|
10 |
-
from datasets import load_dataset
|
11 |
-
from sklearn.feature_extraction.text import TfidfVectorizer
|
12 |
-
from sklearn.neighbors import NearestNeighbors
|
13 |
import gradio as gr
|
|
|
|
|
|
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
|
18 |
-
DEFAULT_OCCASIONS = "birthday, thank_you, housewarming"
|
19 |
|
20 |
OCCASION_OPTIONS = [
|
21 |
"birthday", "anniversary", "valentines", "graduation",
|
@@ -33,10 +42,17 @@ AGE_OPTIONS = {
|
|
33 |
INTEREST_OPTIONS = [
|
34 |
"reading","writing","tech","travel","fitness","cooking","tea","coffee",
|
35 |
"games","movies","plants","music","design","stationery","home","experience",
|
36 |
-
"digital","aesthetic","premium","eco","practical","minimalist","social","party"
|
|
|
37 |
]
|
38 |
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
def _to_price_usd(x):
|
41 |
s = str(x).strip().replace("$","").replace(",","")
|
42 |
try: return float(s)
|
@@ -46,9 +62,28 @@ def _infer_age_from_category(cat: str) -> str:
|
|
46 |
s = (cat or "").lower()
|
47 |
if any(k in s for k in ["baby", "toddler", "infant"]): return "kids"
|
48 |
if "toys & games" in s or "board games" in s or "toy" in s: return "kids"
|
49 |
-
if any(k in s for k in ["teen", "
|
50 |
return "any"
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
def map_amazon_to_schema(df_raw: pd.DataFrame) -> pd.DataFrame:
|
53 |
cols = {c.lower().strip(): c for c in df_raw.columns}
|
54 |
get = lambda key: df_raw.get(cols.get(key, ""), "")
|
@@ -59,15 +94,18 @@ def map_amazon_to_schema(df_raw: pd.DataFrame) -> pd.DataFrame:
|
|
59 |
"price_usd": get("selling price").map(_to_price_usd) if "selling price" in cols else np.nan,
|
60 |
"age_range": "",
|
61 |
"gender_tags": "any",
|
62 |
-
"occasion_tags":
|
63 |
"persona_fit": get("category"),
|
64 |
"image_url": get("image") if "image" in cols else "",
|
65 |
})
|
66 |
-
|
67 |
-
out["
|
|
|
68 |
out["tags"] = out["tags"].astype(str).str.replace("|", ", ").str.lower()
|
69 |
out["persona_fit"] = out["persona_fit"].astype(str).str.lower()
|
70 |
-
|
|
|
|
|
71 |
return out
|
72 |
|
73 |
def build_doc(row: pd.Series) -> str:
|
@@ -86,6 +124,7 @@ def load_catalog() -> pd.DataFrame:
|
|
86 |
ds = load_dataset("ckandemir/amazon-products", split="train")
|
87 |
raw = ds.to_pandas()
|
88 |
except Exception:
|
|
|
89 |
raw = pd.DataFrame({
|
90 |
"Product Name": ["Wireless Earbuds", "Coffee Sampler", "Strategy Board Game"],
|
91 |
"Description": [
|
@@ -105,18 +144,7 @@ def load_catalog() -> pd.DataFrame:
|
|
105 |
|
106 |
CATALOG = load_catalog()
|
107 |
|
108 |
-
#
|
109 |
-
_vectorizer = TfidfVectorizer(min_df=1, ngram_range=(1,2))
|
110 |
-
_X = _vectorizer.fit_transform(CATALOG["doc"].fillna(""))
|
111 |
-
_nn = NearestNeighbors(n_neighbors=10, metric="cosine").fit(_X)
|
112 |
-
|
113 |
-
def profile_to_query(profile: Dict) -> str:
|
114 |
-
interests = ", ".join(profile.get("interests", []))
|
115 |
-
occasion = profile.get("occasion", "")
|
116 |
-
budget = profile.get("budget_usd", "")
|
117 |
-
age = profile.get("age_range", "any")
|
118 |
-
return f"{interests}. occasion: {occasion}. age: {age}. budget: {budget} USD."
|
119 |
-
|
120 |
def _contains_ci(series: pd.Series, needle: str) -> pd.Series:
|
121 |
if not needle: return pd.Series(True, index=series.index)
|
122 |
pat = re.escape(needle)
|
@@ -135,11 +163,57 @@ def filter_business(df: pd.DataFrame, budget_min=None, budget_max=None,
|
|
135 |
m &= (df["age_range"].fillna("any").isin([age_range, "any"]))
|
136 |
return df[m]
|
137 |
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
df_f = filter_business(
|
144 |
CATALOG,
|
145 |
budget_min=profile.get("budget_min"),
|
@@ -147,51 +221,39 @@ def recommend_topk(profile: Dict, k: int=3) -> pd.DataFrame:
|
|
147 |
occasion=profile.get("occasion"),
|
148 |
age_range=profile.get("age_range","any"),
|
149 |
)
|
150 |
-
if df_f.empty:
|
151 |
-
|
152 |
-
|
153 |
-
# Search on the global index, then keep only rows inside df_f
|
154 |
-
n_cand = min(max(k*50, k), len(CATALOG))
|
155 |
-
dists, inds = _nn.kneighbors(q_vec, n_neighbors=n_cand)
|
156 |
-
cand_global = inds[0] # indices in CATALOG
|
157 |
-
d = dists[0]
|
158 |
-
order = np.argsort(d) # ascending distance
|
159 |
seen, picks = set(), []
|
160 |
-
for gi in
|
161 |
-
if gi not in df_f.index:
|
162 |
continue
|
163 |
-
nm = CATALOG.loc[gi, "name"]
|
164 |
if nm in seen:
|
165 |
continue
|
166 |
seen.add(nm)
|
167 |
-
|
168 |
-
sim = 1 - float(_nn.kneighbors_graph(q_vec, n_neighbors=1, mode="distance")[0, gi]) if False else 1.0
|
169 |
-
# we already have distances in d; recompute sim from them using same order index:
|
170 |
-
# get distance for this gi:
|
171 |
-
# (for simplicity we just set sim to 1 - current min distance; not critical for UI ranking)
|
172 |
-
picks.append((gi, None))
|
173 |
if len(picks) >= k:
|
174 |
break
|
175 |
|
176 |
if not picks:
|
177 |
-
|
|
|
|
|
178 |
|
179 |
-
|
180 |
-
res = CATALOG.loc[
|
181 |
-
|
182 |
-
gi_to_dist = {int(gi): float(dist) for gi, dist in zip(cand_global, d)}
|
183 |
-
res["similarity"] = [1.0 - gi_to_dist.get(int(gi), 0.0) for gi in sel]
|
184 |
return res[["name","short_desc","price_usd","occasion_tags","persona_fit","age_range","image_url","similarity"]]
|
185 |
|
186 |
-
#
|
187 |
def generate_item(profile: Dict) -> Dict:
|
188 |
interests = profile.get("interests", [])
|
189 |
-
occasion
|
190 |
-
budget
|
191 |
-
age
|
192 |
-
core = (interests[0] if interests else "hobby").strip()
|
193 |
style = random.choice(["personalized","experience","bundle"])
|
194 |
-
base_name, base_desc = "", ""
|
195 |
if style == "personalized":
|
196 |
base_name = f"Custom {core} accessory with initials"
|
197 |
base_desc = f"Thoughtful personalized {core} accessory tailored to their taste."
|
@@ -207,7 +269,7 @@ def generate_item(profile: Dict) -> Dict:
|
|
207 |
base_desc += " Trendy pick that suits young enthusiasts."
|
208 |
elif age == "senior":
|
209 |
base_desc += " Comfortable and easy to use."
|
210 |
-
price = float(np.clip(float(budget), 10,
|
211 |
return {
|
212 |
"name": f"{base_name} ({occasion})",
|
213 |
"short_desc": base_desc,
|
@@ -226,16 +288,25 @@ def generate_message(profile: Dict) -> str:
|
|
226 |
f"Happy {occasion}! Wishing you health, joy, and wonderful memories. "
|
227 |
f"May your goals come true. With {tone}.")
|
228 |
|
229 |
-
#
|
230 |
EXAMPLES = [
|
231 |
-
[["
|
232 |
-
[["
|
233 |
-
[["
|
|
|
234 |
]
|
235 |
|
236 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
try:
|
238 |
-
#
|
239 |
if isinstance(budget_range, (list, tuple)) and len(budget_range) == 2:
|
240 |
budget_min, budget_max = float(budget_range[0]), float(budget_range[1])
|
241 |
else:
|
@@ -255,30 +326,32 @@ def ui_predict(interests_list: List[str], occasion: str, budget_range, recipient
|
|
255 |
"tone": tone or "warm and friendly",
|
256 |
}
|
257 |
|
258 |
-
recs =
|
259 |
gen = generate_item(profile)
|
260 |
msg = generate_message(profile)
|
261 |
|
262 |
-
top3_md = recs[["name","short_desc","price_usd","age_range","similarity"]]
|
263 |
-
gen_md
|
264 |
return top3_md, gen_md, msg
|
265 |
except Exception as e:
|
266 |
return f":warning: Error: {e}", "", ""
|
267 |
|
268 |
with gr.Blocks() as demo:
|
269 |
-
gr.Markdown(
|
270 |
|
271 |
with gr.Row():
|
272 |
interests = gr.CheckboxGroup(
|
273 |
-
label="Interests (select a few)",
|
274 |
-
|
|
|
|
|
275 |
)
|
276 |
with gr.Row():
|
277 |
occasion = gr.Dropdown(label="Occasion", choices=OCCASION_OPTIONS, value="birthday")
|
278 |
age = gr.Dropdown(label="Age group", choices=list(AGE_OPTIONS.keys()), value="adult (18β64)")
|
|
|
279 |
|
280 |
-
|
281 |
-
budget = gr.Slider(label="Budget (USD)", minimum=5, maximum=500, step=1, value=(20, 60))
|
282 |
|
283 |
with gr.Row():
|
284 |
recipient_name = gr.Textbox(label="Recipient name", value="Noa")
|
@@ -286,18 +359,18 @@ with gr.Blocks() as demo:
|
|
286 |
|
287 |
go = gr.Button("Get GIfty π―")
|
288 |
out_top3 = gr.Markdown(label="Top-3 recommendations")
|
289 |
-
out_gen
|
290 |
-
out_msg
|
291 |
|
292 |
gr.Examples(
|
293 |
EXAMPLES,
|
294 |
-
[interests, occasion, budget, recipient_name, age, tone],
|
295 |
label="Quick examples",
|
296 |
)
|
297 |
|
298 |
go.click(
|
299 |
ui_predict,
|
300 |
-
[interests, occasion, budget, recipient_name, age, tone],
|
301 |
[out_top3, out_gen, out_msg]
|
302 |
)
|
303 |
|
|
|
1 |
# app.py
|
2 |
+
# π GIfty β Smart Gift Recommender (Embeddings + FAISS)
|
3 |
+
# Dataset: ckandemir/amazon-products (Hugging Face)
|
4 |
+
# UI: Gradio (English)
|
5 |
+
#
|
6 |
+
# Requirements (requirements.txt):
|
7 |
+
# gradio>=4.44.0
|
8 |
+
# datasets>=3.0.0
|
9 |
+
# pandas>=2.2.2
|
10 |
+
# numpy>=1.26.4
|
11 |
+
# sentence-transformers>=3.0.1
|
12 |
+
# faiss-cpu>=1.8.0
|
13 |
+
# tabulate>=0.9.0
|
14 |
|
15 |
import os, re, random
|
16 |
+
from typing import Dict, List, Tuple
|
17 |
+
|
18 |
import numpy as np
|
19 |
import pandas as pd
|
|
|
|
|
|
|
20 |
import gradio as gr
|
21 |
+
from datasets import load_dataset
|
22 |
+
from sentence_transformers import SentenceTransformer
|
23 |
+
import faiss
|
24 |
|
25 |
+
# ========================= Config =========================
|
26 |
+
MAX_ROWS = int(os.getenv("MAX_ROWS", "10000")) # cap for speed
|
27 |
+
TITLE = "# π GIfty β Smart Gift Recommender\n*Top-3 similar picks + 1 generated idea + personalized message*"
|
|
|
28 |
|
29 |
OCCASION_OPTIONS = [
|
30 |
"birthday", "anniversary", "valentines", "graduation",
|
|
|
42 |
INTEREST_OPTIONS = [
|
43 |
"reading","writing","tech","travel","fitness","cooking","tea","coffee",
|
44 |
"games","movies","plants","music","design","stationery","home","experience",
|
45 |
+
"digital","aesthetic","premium","eco","practical","minimalist","social","party",
|
46 |
+
"photography","outdoors","pets","beauty","jewelry"
|
47 |
]
|
48 |
|
49 |
+
MODEL_CHOICES = {
|
50 |
+
"MiniLM (384d)": "sentence-transformers/all-MiniLM-L6-v2",
|
51 |
+
"MPNet (768d)": "sentence-transformers/all-mpnet-base-v2",
|
52 |
+
"E5-base (768d)": "intfloat/e5-base-v2",
|
53 |
+
}
|
54 |
+
|
55 |
+
# ========================= Data loading & schema =========================
|
56 |
def _to_price_usd(x):
|
57 |
s = str(x).strip().replace("$","").replace(",","")
|
58 |
try: return float(s)
|
|
|
62 |
s = (cat or "").lower()
|
63 |
if any(k in s for k in ["baby", "toddler", "infant"]): return "kids"
|
64 |
if "toys & games" in s or "board games" in s or "toy" in s: return "kids"
|
65 |
+
if any(k in s for k in ["teen", "young adult", "ya"]): return "teens"
|
66 |
return "any"
|
67 |
|
68 |
+
def _infer_occasion_tags(cat: str) -> str:
|
69 |
+
s = (cat or "").lower()
|
70 |
+
tags = set(["birthday"]) # default
|
71 |
+
if any(k in s for k in ["home & kitchen","furniture","home dΓ©cor","home decor","garden","tools","appliance","cookware","kitchen"]):
|
72 |
+
tags.update(["housewarming","thank_you"])
|
73 |
+
if any(k in s for k in ["beauty","jewelry","watch","fragrance","cosmetic","makeup","skincare"]):
|
74 |
+
tags.update(["valentines","anniversary"])
|
75 |
+
if any(k in s for k in ["toys","board game","puzzle","kids","lego"]):
|
76 |
+
tags.update(["hanukkah","christmas"])
|
77 |
+
if any(k in s for k in ["office","stationery","notebook","pen","planner"]):
|
78 |
+
tags.update(["graduation","thank_you"])
|
79 |
+
if any(k in s for k in ["electronics","camera","audio","headphones","gaming","computer"]):
|
80 |
+
tags.update(["birthday","christmas"])
|
81 |
+
if any(k in s for k in ["book","novel","literature"]):
|
82 |
+
tags.update(["graduation","thank_you"])
|
83 |
+
if any(k in s for k in ["sports","fitness","outdoor","camping","hiking","run","yoga"]):
|
84 |
+
tags.update(["birthday"])
|
85 |
+
return ",".join(sorted(tags))
|
86 |
+
|
87 |
def map_amazon_to_schema(df_raw: pd.DataFrame) -> pd.DataFrame:
|
88 |
cols = {c.lower().strip(): c for c in df_raw.columns}
|
89 |
get = lambda key: df_raw.get(cols.get(key, ""), "")
|
|
|
94 |
"price_usd": get("selling price").map(_to_price_usd) if "selling price" in cols else np.nan,
|
95 |
"age_range": "",
|
96 |
"gender_tags": "any",
|
97 |
+
"occasion_tags": "",
|
98 |
"persona_fit": get("category"),
|
99 |
"image_url": get("image") if "image" in cols else "",
|
100 |
})
|
101 |
+
# clean
|
102 |
+
out["name"] = out["name"].astype(str).str.strip().str.slice(0, 120)
|
103 |
+
out["short_desc"] = out["short_desc"].astype(str).str.strip().str.slice(0, 500)
|
104 |
out["tags"] = out["tags"].astype(str).str.replace("|", ", ").str.lower()
|
105 |
out["persona_fit"] = out["persona_fit"].astype(str).str.lower()
|
106 |
+
# infer occasion & age
|
107 |
+
out["occasion_tags"] = out["tags"].map(_infer_occasion_tags)
|
108 |
+
out["age_range"] = out["tags"].map(_infer_age_from_category).fillna("any")
|
109 |
return out
|
110 |
|
111 |
def build_doc(row: pd.Series) -> str:
|
|
|
124 |
ds = load_dataset("ckandemir/amazon-products", split="train")
|
125 |
raw = ds.to_pandas()
|
126 |
except Exception:
|
127 |
+
# Fallback (keeps the app alive if internet is blocked)
|
128 |
raw = pd.DataFrame({
|
129 |
"Product Name": ["Wireless Earbuds", "Coffee Sampler", "Strategy Board Game"],
|
130 |
"Description": [
|
|
|
144 |
|
145 |
CATALOG = load_catalog()
|
146 |
|
147 |
+
# ========================= Business filters =========================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
def _contains_ci(series: pd.Series, needle: str) -> pd.Series:
|
149 |
if not needle: return pd.Series(True, index=series.index)
|
150 |
pat = re.escape(needle)
|
|
|
163 |
m &= (df["age_range"].fillna("any").isin([age_range, "any"]))
|
164 |
return df[m]
|
165 |
|
166 |
+
# ========================= Embeddings + FAISS =========================
|
167 |
+
class EmbeddingStore:
|
168 |
+
def __init__(self, docs: List[str]):
|
169 |
+
self.docs = docs
|
170 |
+
self.model_cache: Dict[str, SentenceTransformer] = {}
|
171 |
+
self.index_cache: Dict[str, faiss.Index] = {}
|
172 |
+
self.dim_cache: Dict[str, int] = {}
|
173 |
+
|
174 |
+
def _build(self, model_id: str):
|
175 |
+
model = SentenceTransformer(model_id)
|
176 |
+
embs = model.encode(self.docs, convert_to_numpy=True, normalize_embeddings=True)
|
177 |
+
index = faiss.IndexFlatIP(embs.shape[1]) # cosine if normalized
|
178 |
+
index.add(embs)
|
179 |
+
self.model_cache[model_id] = model
|
180 |
+
self.index_cache[model_id] = index
|
181 |
+
self.dim_cache[model_id] = embs.shape[1]
|
182 |
+
|
183 |
+
def ensure_ready(self, model_id: str):
|
184 |
+
if model_id not in self.index_cache:
|
185 |
+
self._build(model_id)
|
186 |
+
|
187 |
+
def search(self, model_id: str, query: str, topn: int) -> Tuple[np.ndarray, np.ndarray]:
|
188 |
+
self.ensure_ready(model_id)
|
189 |
+
model = self.model_cache[model_id]
|
190 |
+
index = self.index_cache[model_id]
|
191 |
+
qv = model.encode([query], convert_to_numpy=True, normalize_embeddings=True)
|
192 |
+
sims, idxs = index.search(qv, topn)
|
193 |
+
return sims[0], idxs[0]
|
194 |
+
|
195 |
+
EMB_STORE = EmbeddingStore(CATALOG["doc"].tolist())
|
196 |
|
197 |
+
def profile_to_query(profile: Dict) -> str:
|
198 |
+
"""Weighted, doc-aligned query: focuses on interests/occasion/age used in docs."""
|
199 |
+
interests = [t.strip().lower() for t in profile.get("interests", []) if t.strip()]
|
200 |
+
interests_expanded = interests + interests + interests # weight *3
|
201 |
+
occasion = (profile.get("occasion", "") or "").lower()
|
202 |
+
age = profile.get("age_range", "any")
|
203 |
+
parts = []
|
204 |
+
if interests_expanded: parts.append(", ".join(interests_expanded))
|
205 |
+
if occasion: parts.append(occasion)
|
206 |
+
if age and age != "any": parts.append(age)
|
207 |
+
return " | ".join(parts).strip()
|
208 |
+
|
209 |
+
def recommend_topk_embeddings(profile: Dict, model_key: str, k: int=3) -> pd.DataFrame:
|
210 |
+
model_id = MODEL_CHOICES.get(model_key, list(MODEL_CHOICES.values())[0])
|
211 |
+
query = profile_to_query(profile)
|
212 |
+
|
213 |
+
# global search on whole catalog
|
214 |
+
sims, idxs = EMB_STORE.search(model_id, query, topn=min(max(k*50, k), len(CATALOG)))
|
215 |
+
|
216 |
+
# filter to business subset
|
217 |
df_f = filter_business(
|
218 |
CATALOG,
|
219 |
budget_min=profile.get("budget_min"),
|
|
|
221 |
occasion=profile.get("occasion"),
|
222 |
age_range=profile.get("age_range","any"),
|
223 |
)
|
224 |
+
if df_f.empty: df_f = CATALOG
|
225 |
+
|
226 |
+
order = np.argsort(-sims) # descending similarity
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
seen, picks = set(), []
|
228 |
+
for gi in idxs[order]:
|
229 |
+
if gi not in df_f.index: # keep only allowed subset
|
230 |
continue
|
231 |
+
nm = CATALOG.loc[int(gi), "name"]
|
232 |
if nm in seen:
|
233 |
continue
|
234 |
seen.add(nm)
|
235 |
+
picks.append(int(gi))
|
|
|
|
|
|
|
|
|
|
|
236 |
if len(picks) >= k:
|
237 |
break
|
238 |
|
239 |
if not picks:
|
240 |
+
res = df_f.head(k).copy()
|
241 |
+
res["similarity"] = np.nan
|
242 |
+
return res[["name","short_desc","price_usd","occasion_tags","persona_fit","age_range","image_url","similarity"]]
|
243 |
|
244 |
+
gi_to_sim = {int(i): float(s) for i, s in zip(idxs, sims)}
|
245 |
+
res = CATALOG.loc[picks].copy()
|
246 |
+
res["similarity"] = [gi_to_sim.get(int(i), np.nan) for i in picks]
|
|
|
|
|
247 |
return res[["name","short_desc","price_usd","occasion_tags","persona_fit","age_range","image_url","similarity"]]
|
248 |
|
249 |
+
# ========================= Synthetic item + message =========================
|
250 |
def generate_item(profile: Dict) -> Dict:
|
251 |
interests = profile.get("interests", [])
|
252 |
+
occasion = profile.get("occasion","birthday")
|
253 |
+
budget = profile.get("budget_max", profile.get("budget_usd", 50)) or 50
|
254 |
+
age = profile.get("age_range","any")
|
255 |
+
core = (interests[0] if interests else "hobby").strip() or "hobby"
|
256 |
style = random.choice(["personalized","experience","bundle"])
|
|
|
257 |
if style == "personalized":
|
258 |
base_name = f"Custom {core} accessory with initials"
|
259 |
base_desc = f"Thoughtful personalized {core} accessory tailored to their taste."
|
|
|
269 |
base_desc += " Trendy pick that suits young enthusiasts."
|
270 |
elif age == "senior":
|
271 |
base_desc += " Comfortable and easy to use."
|
272 |
+
price = float(np.clip(float(budget), 10, 300))
|
273 |
return {
|
274 |
"name": f"{base_name} ({occasion})",
|
275 |
"short_desc": base_desc,
|
|
|
288 |
f"Happy {occasion}! Wishing you health, joy, and wonderful memories. "
|
289 |
f"May your goals come true. With {tone}.")
|
290 |
|
291 |
+
# ========================= Gradio UI =========================
|
292 |
EXAMPLES = [
|
293 |
+
[["tech","music"], "birthday", [20, 60], "Noa", "adult (18β64)", "MiniLM (384d)", "warm and friendly"],
|
294 |
+
[["home","cooking","practical"], "housewarming", [25, 45], "Daniel", "adult (18β64)", "MiniLM (384d)", "warm"],
|
295 |
+
[["games","photography"], "birthday", [30, 120], "Omer", "teen (13β17)", "MPNet (768d)", "fun"],
|
296 |
+
[["reading","design","aesthetic"], "thank_you", [15, 35], "Maya", "any", "E5-base (768d)", "friendly"],
|
297 |
]
|
298 |
|
299 |
+
def safe_markdown_table(df: pd.DataFrame) -> str:
|
300 |
+
try:
|
301 |
+
return df.to_markdown(index=False)
|
302 |
+
except Exception:
|
303 |
+
# fallback if tabulate is missing
|
304 |
+
return df.to_string(index=False)
|
305 |
+
|
306 |
+
def ui_predict(interests_list: List[str], occasion: str, budget_range, recipient_name: str,
|
307 |
+
age_label: str, model_key: str, tone: str):
|
308 |
try:
|
309 |
+
# Parse budget range [min, max]
|
310 |
if isinstance(budget_range, (list, tuple)) and len(budget_range) == 2:
|
311 |
budget_min, budget_max = float(budget_range[0]), float(budget_range[1])
|
312 |
else:
|
|
|
326 |
"tone": tone or "warm and friendly",
|
327 |
}
|
328 |
|
329 |
+
recs = recommend_topk_embeddings(profile, model_key, k=3)
|
330 |
gen = generate_item(profile)
|
331 |
msg = generate_message(profile)
|
332 |
|
333 |
+
top3_md = safe_markdown_table(recs[["name","short_desc","price_usd","age_range","similarity"]])
|
334 |
+
gen_md = f"**{gen['name']}**\n\n{gen['short_desc']}\n\n~${gen['price_usd']:.0f}"
|
335 |
return top3_md, gen_md, msg
|
336 |
except Exception as e:
|
337 |
return f":warning: Error: {e}", "", ""
|
338 |
|
339 |
with gr.Blocks() as demo:
|
340 |
+
gr.Markdown(TITLE)
|
341 |
|
342 |
with gr.Row():
|
343 |
interests = gr.CheckboxGroup(
|
344 |
+
label="Interests (select a few)",
|
345 |
+
choices=INTEREST_OPTIONS,
|
346 |
+
value=["tech","music"],
|
347 |
+
interactive=True
|
348 |
)
|
349 |
with gr.Row():
|
350 |
occasion = gr.Dropdown(label="Occasion", choices=OCCASION_OPTIONS, value="birthday")
|
351 |
age = gr.Dropdown(label="Age group", choices=list(AGE_OPTIONS.keys()), value="adult (18β64)")
|
352 |
+
model = gr.Dropdown(label="Embedding model", choices=list(MODEL_CHOICES.keys()), value="MiniLM (384d)")
|
353 |
|
354 |
+
budget = gr.RangeSlider(label="Budget range (USD)", minimum=5, maximum=500, step=1, value=[20, 60])
|
|
|
355 |
|
356 |
with gr.Row():
|
357 |
recipient_name = gr.Textbox(label="Recipient name", value="Noa")
|
|
|
359 |
|
360 |
go = gr.Button("Get GIfty π―")
|
361 |
out_top3 = gr.Markdown(label="Top-3 recommendations")
|
362 |
+
out_gen = gr.Markdown(label="Generated item")
|
363 |
+
out_msg = gr.Markdown(label="Personalized message")
|
364 |
|
365 |
gr.Examples(
|
366 |
EXAMPLES,
|
367 |
+
[interests, occasion, budget, recipient_name, age, model, tone],
|
368 |
label="Quick examples",
|
369 |
)
|
370 |
|
371 |
go.click(
|
372 |
ui_predict,
|
373 |
+
[interests, occasion, budget, recipient_name, age, model, tone],
|
374 |
[out_top3, out_gen, out_msg]
|
375 |
)
|
376 |
|