Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,80 +1,109 @@
|
|
1 |
-
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
MyMemoryTranslator,
|
10 |
-
YandexTranslator,
|
11 |
-
DeeplTranslator,
|
12 |
-
QcriTranslator,
|
13 |
-
single_detection,
|
14 |
-
batch_detection)
|
15 |
-
from pyaspeller import YandexSpeller
|
16 |
-
|
17 |
-
def error_correct_pyspeller(sample_text):
|
18 |
-
""" grammer correction of input text"""
|
19 |
-
speller = YandexSpeller()
|
20 |
-
fixed = speller.spelled(sample_text)
|
21 |
-
return fixed
|
22 |
-
|
23 |
-
def postprocerssing(inp_text: str):
|
24 |
-
"""Post preocessing of the llm response"""
|
25 |
-
inp_text = re.sub('<[^>]+>', '', inp_text)
|
26 |
-
inp_text = inp_text.split('##', 1)[0]
|
27 |
-
inp_text = error_correct_pyspeller(inp_text)
|
28 |
-
return inp_text
|
29 |
-
|
30 |
-
|
31 |
-
quantization_config = BitsAndBytesConfig(
|
32 |
-
load_in_4bit=True,
|
33 |
-
bnb_4bit_quant_type="nf4",
|
34 |
-
bnb_4bit_compute_dtype="float16",
|
35 |
-
bnb_4bit_use_double_quant=True,
|
36 |
-
)
|
37 |
-
|
38 |
-
llm = HuggingFacePipeline.from_model_id(
|
39 |
-
model_id="Danielrahmai1991/nvlm_adapt_basic_model_16bit",
|
40 |
-
task="text-generation",
|
41 |
-
pipeline_kwargs=dict(
|
42 |
-
max_new_tokens=512,
|
43 |
-
do_sample=True,
|
44 |
-
repetition_penalty=1.15,
|
45 |
-
trust_remote_code= True,
|
46 |
-
temperature= 0.70
|
47 |
-
|
48 |
-
),
|
49 |
-
model_kwargs={"quantization_config": quantization_config,
|
50 |
-
},
|
51 |
-
)
|
52 |
-
|
53 |
-
chat_model = ChatHuggingFace(llm=llm)
|
54 |
-
|
55 |
-
# history of the messages
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
def clear_memory(messages):
|
58 |
messages.clear()
|
59 |
return "Memory cleaned."
|
60 |
|
61 |
-
def llm_run(prompt, messages):
|
62 |
-
print(f"question is {prompt}")
|
63 |
-
lang = single_detection(prompt, api_key='4ab77f25578d450f0902fb42c66d5e11')
|
64 |
-
if lang == 'en':
|
65 |
-
prompt = error_correct_pyspeller(prompt)
|
66 |
-
en_translated = GoogleTranslator(source='auto', target='en').translate(prompt)
|
67 |
-
messages.append({"role": "user", "content": en_translated})
|
68 |
-
ai_msg = chat_model.invoke(messages, skip_prompt = True)
|
69 |
-
response_of_llm = postprocerssing(ai_msg.content)
|
70 |
-
messages.append({"role": "assistant", "content": response_of_llm})
|
71 |
-
response_of_llm = GoogleTranslator(source='auto', target=lang).translate(response_of_llm)
|
72 |
-
print(f"out is: {response_of_llm}")
|
73 |
-
return response_of_llm
|
74 |
-
|
75 |
-
# def greet(prompt, m_type):
|
76 |
-
# return "hi"
|
77 |
-
|
78 |
with gr.Blocks(theme=gr.themes.Default(primary_hue=gr.themes.colors.orange, secondary_hue=gr.themes.colors.pink)) as demo:
|
79 |
stored_message = gr.State([])
|
80 |
with gr.Row():
|
@@ -86,11 +115,9 @@ with gr.Blocks(theme=gr.themes.Default(primary_hue=gr.themes.colors.orange, seco
|
|
86 |
btn3 = gr.Button("Clean Memory", scale=2)
|
87 |
with gr.Column(scale=2):
|
88 |
out_text = gr.Text(lines=15, label="Output", scale=2)
|
89 |
-
btn1.click(fn=
|
90 |
btn2.click(lambda: [None, None], outputs=[text1, out_text])
|
91 |
btn3.click(fn=clear_memory, inputs=[stored_message], outputs=[out_text])
|
92 |
-
|
93 |
-
# demo = gr.Interface(fn=llm_run, inputs=["text"], outputs="text")
|
94 |
-
demo.launch(debug=True, share=True)
|
95 |
|
96 |
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
|
3 |
+
# from langchain_huggingface import ChatHuggingFace, HuggingFacePipeline
|
4 |
+
# from transformers import BitsAndBytesConfig
|
5 |
+
# import re
|
6 |
+
# from deep_translator import (GoogleTranslator,
|
7 |
+
# PonsTranslator,
|
8 |
+
# LingueeTranslator,
|
9 |
+
# MyMemoryTranslator,
|
10 |
+
# YandexTranslator,
|
11 |
+
# DeeplTranslator,
|
12 |
+
# QcriTranslator,
|
13 |
+
# single_detection,
|
14 |
+
# batch_detection)
|
15 |
+
# from pyaspeller import YandexSpeller
|
16 |
+
|
17 |
+
# def error_correct_pyspeller(sample_text):
|
18 |
+
# """ grammer correction of input text"""
|
19 |
+
# speller = YandexSpeller()
|
20 |
+
# fixed = speller.spelled(sample_text)
|
21 |
+
# return fixed
|
22 |
+
|
23 |
+
# def postprocerssing(inp_text: str):
|
24 |
+
# """Post preocessing of the llm response"""
|
25 |
+
# inp_text = re.sub('<[^>]+>', '', inp_text)
|
26 |
+
# inp_text = inp_text.split('##', 1)[0]
|
27 |
+
# inp_text = error_correct_pyspeller(inp_text)
|
28 |
+
# return inp_text
|
29 |
+
|
30 |
|
31 |
+
# quantization_config = BitsAndBytesConfig(
|
32 |
+
# load_in_4bit=True,
|
33 |
+
# bnb_4bit_quant_type="nf4",
|
34 |
+
# bnb_4bit_compute_dtype="float16",
|
35 |
+
# bnb_4bit_use_double_quant=True,
|
36 |
+
# )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
# llm = HuggingFacePipeline.from_model_id(
|
39 |
+
# model_id="Danielrahmai1991/nvlm_adapt_basic_model_16bit",
|
40 |
+
# task="text-generation",
|
41 |
+
# pipeline_kwargs=dict(
|
42 |
+
# max_new_tokens=512,
|
43 |
+
# do_sample=True,
|
44 |
+
# repetition_penalty=1.15,
|
45 |
+
# trust_remote_code= True,
|
46 |
+
# temperature= 0.70
|
47 |
+
|
48 |
+
# ),
|
49 |
+
# model_kwargs={"quantization_config": quantization_config,
|
50 |
+
# },
|
51 |
+
# )
|
52 |
+
|
53 |
+
# chat_model = ChatHuggingFace(llm=llm)
|
54 |
+
|
55 |
+
# # history of the messages
|
56 |
+
|
57 |
+
# def clear_memory(messages):
|
58 |
+
# messages.clear()
|
59 |
+
# return "Memory cleaned."
|
60 |
+
|
61 |
+
# def llm_run(prompt, messages):
|
62 |
+
# print(f"question is {prompt}")
|
63 |
+
# lang = single_detection(prompt, api_key='4ab77f25578d450f0902fb42c66d5e11')
|
64 |
+
# if lang == 'en':
|
65 |
+
# prompt = error_correct_pyspeller(prompt)
|
66 |
+
# en_translated = GoogleTranslator(source='auto', target='en').translate(prompt)
|
67 |
+
# messages.append({"role": "user", "content": en_translated})
|
68 |
+
# ai_msg = chat_model.invoke(messages, skip_prompt = True)
|
69 |
+
# response_of_llm = postprocerssing(ai_msg.content)
|
70 |
+
# messages.append({"role": "assistant", "content": response_of_llm})
|
71 |
+
# response_of_llm = GoogleTranslator(source='auto', target=lang).translate(response_of_llm)
|
72 |
+
# print(f"out is: {response_of_llm}")
|
73 |
+
# return response_of_llm
|
74 |
+
|
75 |
+
# # def greet(prompt, m_type):
|
76 |
+
# # return "hi"
|
77 |
+
|
78 |
+
# with gr.Blocks(theme=gr.themes.Default(primary_hue=gr.themes.colors.orange, secondary_hue=gr.themes.colors.pink)) as demo:
|
79 |
+
# stored_message = gr.State([])
|
80 |
+
# with gr.Row():
|
81 |
+
# with gr.Column(scale=2):
|
82 |
+
# text1 = gr.Textbox(lines=7, label="Prompt", scale=2)
|
83 |
+
# with gr.Row():
|
84 |
+
# btn1 = gr.Button("Submit", scale=1)
|
85 |
+
# btn2 = gr.Button("Clear", scale=1)
|
86 |
+
# btn3 = gr.Button("Clean Memory", scale=2)
|
87 |
+
# with gr.Column(scale=2):
|
88 |
+
# out_text = gr.Text(lines=15, label="Output", scale=2)
|
89 |
+
# btn1.click(fn=llm_run, inputs=[text1, stored_message], outputs=out_text)
|
90 |
+
# btn2.click(lambda: [None, None], outputs=[text1, out_text])
|
91 |
+
# btn3.click(fn=clear_memory, inputs=[stored_message], outputs=[out_text])
|
92 |
+
|
93 |
+
# # demo = gr.Interface(fn=llm_run, inputs=["text"], outputs="text")
|
94 |
+
# demo.launch(debug=True, share=True)
|
95 |
+
|
96 |
+
import gradio as gr
|
97 |
+
|
98 |
+
def greet(inp, messages):
|
99 |
+
messages.append(inp)
|
100 |
+
print(messages)
|
101 |
+
return "Hello " + inp + "!"
|
102 |
+
|
103 |
def clear_memory(messages):
|
104 |
messages.clear()
|
105 |
return "Memory cleaned."
|
106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
with gr.Blocks(theme=gr.themes.Default(primary_hue=gr.themes.colors.orange, secondary_hue=gr.themes.colors.pink)) as demo:
|
108 |
stored_message = gr.State([])
|
109 |
with gr.Row():
|
|
|
115 |
btn3 = gr.Button("Clean Memory", scale=2)
|
116 |
with gr.Column(scale=2):
|
117 |
out_text = gr.Text(lines=15, label="Output", scale=2)
|
118 |
+
btn1.click(fn=greet, inputs=[text1, stored_message], outputs=out_text)
|
119 |
btn2.click(lambda: [None, None], outputs=[text1, out_text])
|
120 |
btn3.click(fn=clear_memory, inputs=[stored_message], outputs=[out_text])
|
121 |
+
demo.launch()
|
|
|
|
|
122 |
|
123 |
|