Spaces:
Paused
Paused
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from threading import Thread
|
2 |
+
from transformers import TextIteratorStreame
|
3 |
+
from unsloth import FastLanguageModel
|
4 |
+
import torch
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
|
8 |
+
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
9 |
+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
|
10 |
+
|
11 |
+
model_name = "Danielrahmai1991/llama32_ganjoor_adapt_basic_model_16bit_v1"
|
12 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
13 |
+
model_name = model_name,
|
14 |
+
max_seq_length = max_seq_length,
|
15 |
+
dtype = dtype,
|
16 |
+
load_in_4bit = load_in_4bit,
|
17 |
+
trust_remote_code=True,
|
18 |
+
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
|
19 |
+
)
|
20 |
+
|
21 |
+
print("model loaded")
|
22 |
+
|
23 |
+
|
24 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens = True)
|
25 |
+
|
26 |
+
def generate_text(prompt, max_length, top_p, top_k):
|
27 |
+
inputs = tokenizer([prompt], return_tensors="pt")
|
28 |
+
|
29 |
+
generate_kwargs = dict(
|
30 |
+
inputs,
|
31 |
+
max_length=int(max_length),top_p=float(top_p), do_sample=True, top_k=int(top_k), streamer=streamer
|
32 |
+
)
|
33 |
+
|
34 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
35 |
+
t.start()
|
36 |
+
|
37 |
+
generated_text=[]
|
38 |
+
|
39 |
+
for text in streamer:
|
40 |
+
generated_text.append(text)
|
41 |
+
yield "".join(generated_text)
|
42 |
+
|
43 |
+
|
44 |
+
description = """
|
45 |
+
# Deploy our LLM
|
46 |
+
"""
|
47 |
+
inputs = [
|
48 |
+
gr.Textbox(label="Prompt text"),
|
49 |
+
gr.Textbox(label="max-lenth generation", value=100),
|
50 |
+
gr.Slider(0.0, 1.0, label="top-p value", value=0.95),
|
51 |
+
gr.Textbox(label="top-k", value=50,),
|
52 |
+
]
|
53 |
+
outputs = [gr.Textbox(label="Generated Text")]
|
54 |
+
|
55 |
+
demo = gr.Interface(fn=generate_text, inputs=inputs, outputs=outputs, allow_flagging=False, description=description)
|
56 |
+
|
57 |
+
demo.launch(debug=True, share=True)
|