Spaces:
Daniton
/
Runtime error

nsfw / app.py
Daniton's picture
Duplicate from suko/nsfw
702de91
raw
history blame
4.98 kB
import gradio as gr
import numpy as np
import json
import os
from PIL import Image
import onnxruntime as rt
class ONNXModel:
def __init__(self, dir_path) -> None:
"""Method to get name of model file. Assumes model is in the parent directory for script."""
model_dir = os.path.dirname(dir_path)
with open(os.path.join(model_dir, "signature.json"), "r") as f:
self.signature = json.load(f)
self.model_file = os.path.join(model_dir, self.signature.get("filename"))
if not os.path.isfile(self.model_file):
raise FileNotFoundError(f"Model file does not exist")
# get the signature for model inputs and outputs
self.signature_inputs = self.signature.get("inputs")
self.signature_outputs = self.signature.get("outputs")
self.session = None
if "Image" not in self.signature_inputs:
raise ValueError("ONNX model doesn't have 'Image' input! Check signature.json, and please report issue to Lobe.")
# Look for the version in signature file.
# If it's not found or the doesn't match expected, print a message
version = self.signature.get("export_model_version")
if version is None or version != EXPORT_MODEL_VERSION:
print(
f"There has been a change to the model format. Please use a model with a signature 'export_model_version' that matches {EXPORT_MODEL_VERSION}."
)
def load(self) -> None:
"""Load the model from path to model file"""
# Load ONNX model as session.
self.session = rt.InferenceSession(path_or_bytes=self.model_file)
def predict(self, image: Image.Image) -> dict:
"""
Predict with the ONNX session!
"""
# process image to be compatible with the model
img = self.process_image(image, self.signature_inputs.get("Image").get("shape"))
# run the model!
fetches = [(key, value.get("name")) for key, value in self.signature_outputs.items()]
# make the image a batch of 1
feed = {self.signature_inputs.get("Image").get("name"): [img]}
outputs = self.session.run(output_names=[name for (_, name) in fetches], input_feed=feed)
return self.process_output(fetches, outputs)
def process_image(self, image: Image.Image, input_shape: list) -> np.ndarray:
"""
Given a PIL Image, center square crop and resize to fit the expected model input, and convert from [0,255] to [0,1] values.
"""
width, height = image.size
# ensure image type is compatible with model and convert if not
if image.mode != "RGB":
image = image.convert("RGB")
# center crop image (you can substitute any other method to make a square image, such as just resizing or padding edges with 0)
if width != height:
square_size = min(width, height)
left = (width - square_size) / 2
top = (height - square_size) / 2
right = (width + square_size) / 2
bottom = (height + square_size) / 2
# Crop the center of the image
image = image.crop((left, top, right, bottom))
# now the image is square, resize it to be the right shape for the model input
input_width, input_height = input_shape[1:3]
if image.width != input_width or image.height != input_height:
image = image.resize((input_width, input_height))
# make 0-1 float instead of 0-255 int (that PIL Image loads by default)
image = np.asarray(image) / 255.0
# format input as model expects
return image.astype(np.float32)
def process_output(self, fetches: dict, outputs: dict) -> dict:
# un-batch since we ran an image with batch size of 1,
# convert to normal python types with tolist(), and convert any byte strings to normal strings with .decode()
out_keys = ["label", "confidence"]
results = {}
for i, (key, _) in enumerate(fetches):
val = outputs[i].tolist()[0]
if isinstance(val, bytes):
val = val.decode()
results[key] = val
confs = results["Confidences"]
labels = self.signature.get("classes").get("Label")
output = [dict(zip(out_keys, group)) for group in zip(labels, confs)]
sorted_output = {"predictions": sorted(output, key=lambda k: k["confidence"], reverse=True)}
return sorted_output
EXPORT_MODEL_VERSION=1
model = ONNXModel(dir_path="model.onnx")
model.load()
def predict(image):
image = Image.fromarray(np.uint8(image), 'RGB')
prediction = model.predict(image)
for output in prediction["predictions"]:
output["confidence"] = round(output["confidence"], 4)
return prediction
inputs = gr.inputs.Image(type="pil")
outputs = gr.outputs.JSON()
runtime=gr.Interface(title="Naked Detector",fn=predict, inputs=inputs, outputs=outputs)
runtime.launch()