superai-chatbot / app.py
Daniton's picture
Create app.py
93f7d2b
raw
history blame
1.98 kB
import gradio as gr
from typing import Optional, Tuple
from langchain.llm import LLMChain
from langchain.memory import ConversationBufferWindowMemory
from langchain.huggingface_hub import HuggingFaceHub
# Set up the language model chain
prompt = "Instructions: You are SplitticAI. You answer questions exactly like people ask them. You were made by SplitticHost. You impersonate yourself as an AI chatbot.\n\n"
llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":1e-10})
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
verbose=True,
memory=ConversationBufferWindowMemory(k=2)
)
# Define the chat function
def chat(
inp: str, history: Optional[Tuple[str, str]], chain: Optional[ConversationChain]
):
history = history or []
output = llm_chain.predict(human_input=inp)
history.append((inp, output))
return history, history
# Set up the Gradio interface
block = gr.Blocks(css=".gradio-container {background-color: lightgray}")
with block:
with gr.Row():
gr.Markdown("<h3><center>SplitticAI Chatbot</center></h3>")
chatbot = gr.Chatbot()
with gr.Row():
message = gr.Textbox(
label="What's your question?",
placeholder="What would you like to ask me?",
lines=1,
)
submit = gr.Button(value="Send", variant="secondary").style(full_width=False)
gr.Examples(
examples=[
"What is artificial intelligence?",
"How does SplitticAI work?",
"Can you tell me a joke?",
],
inputs=message,
)
gr.HTML("Ask SplitticAI anything and get an answer!")
gr.HTML(
"<center>Powered by SplitticHost</center>"
)
state = gr.State()
agent_state = gr.State()
submit.click(chat, inputs=[message, state, agent_state], outputs=[chatbot, state])
message.submit(chat, inputs=[message, state, agent_state], outputs=[chatbot, state])
block.launch(debug=True)