Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,32 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
|
3 |
-
|
4 |
-
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
|
4 |
+
# Cargar el modelo pre-entrenado
|
5 |
+
gender_classifier = pipeline('text-classification', model='Dannel/Gender_Classifier')
|
6 |
|
7 |
+
def infer_gender(name):
|
8 |
+
"""
|
9 |
+
Infiere el g茅nero de una persona a partir de su nombre.
|
10 |
+
|
11 |
+
Args:
|
12 |
+
name (str): El nombre de la persona.
|
13 |
+
|
14 |
+
Returns:
|
15 |
+
str: El g茅nero predicho ('Male' o 'Female').
|
16 |
+
"""
|
17 |
+
# Hacer la predicci贸n utilizando el modelo cargado
|
18 |
+
prediction = gender_classifier([name])[0]
|
19 |
+
|
20 |
+
return prediction['label']
|
21 |
+
|
22 |
+
# Crear la interfaz de Gradio
|
23 |
+
demo = gr.Interface(
|
24 |
+
fn=infer_gender,
|
25 |
+
inputs=gr.Textbox(label="Nombre"),
|
26 |
+
outputs=gr.Label(label="G茅nero predicho"),
|
27 |
+
title="Clasificador de G茅nero",
|
28 |
+
description="Ingresa un nombre para predecir su g茅nero."
|
29 |
+
)
|
30 |
+
|
31 |
+
# Ejecutar la aplicaci贸n
|
32 |
+
demo.launch(share=True)
|