Spaces:
Runtime error
Runtime error
File size: 35,859 Bytes
57e3690 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 |
from __future__ import annotations
import logging
import os
import shutil
import struct
import tempfile
from dataclasses import dataclass
from enum import Enum, auto
from math import prod
from pathlib import Path
from io import BufferedWriter
from typing import IO, Any, Sequence, Mapping
from string import ascii_letters, digits
import numpy as np
from .constants import (
GGUF_DEFAULT_ALIGNMENT,
GGUF_MAGIC,
GGUF_VERSION,
GGMLQuantizationType,
GGUFEndian,
GGUFValueType,
Keys,
RopeScalingType,
PoolingType,
TokenType,
)
from .quants import quant_shape_from_byte_shape
logger = logging.getLogger(__name__)
SHARD_NAME_FORMAT = "{:s}-{:05d}-of-{:05d}.gguf"
@dataclass
class TensorInfo:
shape: Sequence[int]
dtype: GGMLQuantizationType
nbytes: int
tensor: np.ndarray[Any, Any] | None = None
@dataclass
class GGUFValue:
value: Any
type: GGUFValueType
class WriterState(Enum):
NO_FILE = auto()
EMPTY = auto()
HEADER = auto()
KV_DATA = auto()
TI_DATA = auto()
WEIGHTS = auto()
class GGUFWriter:
fout: list[BufferedWriter] | None
path: Path | None
temp_file: tempfile.SpooledTemporaryFile[bytes] | None
tensors: list[dict[str, TensorInfo]]
kv_data: list[dict[str, GGUFValue]]
state: WriterState
_simple_value_packing = {
GGUFValueType.UINT8: "B",
GGUFValueType.INT8: "b",
GGUFValueType.UINT16: "H",
GGUFValueType.INT16: "h",
GGUFValueType.UINT32: "I",
GGUFValueType.INT32: "i",
GGUFValueType.FLOAT32: "f",
GGUFValueType.UINT64: "Q",
GGUFValueType.INT64: "q",
GGUFValueType.FLOAT64: "d",
GGUFValueType.BOOL: "?",
}
def __init__(
self, path: os.PathLike[str] | str | None, arch: str, use_temp_file: bool = False, endianess: GGUFEndian = GGUFEndian.LITTLE,
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False
):
self.fout = None
self.path = Path(path) if path else None
self.arch = arch
self.endianess = endianess
self.data_alignment = GGUF_DEFAULT_ALIGNMENT
self.use_temp_file = use_temp_file
self.temp_file = None
self.tensors = [{}]
self.kv_data = [{}]
self.split_max_tensors = split_max_tensors
self.split_max_size = split_max_size
self.dry_run = dry_run
self.small_first_shard = small_first_shard
logger.info("gguf: This GGUF file is for {0} Endian only".format(
"Big" if self.endianess == GGUFEndian.BIG else "Little",
))
self.state = WriterState.NO_FILE
if self.small_first_shard:
self.tensors.append({})
self.add_architecture()
def get_total_parameter_count(self) -> tuple[int, int, int, int]:
total_params = 0
shared_params = 0
expert_params = 0
expert_sum = 0
n_expert_tensors = 0
last_lora_a: tuple[str, TensorInfo] | None = None
for tensors in self.tensors:
for name, info in tensors.items():
shape = info.shape
if name.endswith(".lora_a"):
last_lora_a = (name, info)
continue
elif name.endswith(".lora_b"):
if last_lora_a is None or last_lora_a[0] != name[:-1] + "a":
# Bail when the LoRA pair can't be found trivially
logger.warning("can't measure LoRA size correctly, tensor order is unusual")
return 0, 0, 0, 0
else:
shape = (*shape[:-1], last_lora_a[1].shape[-1])
size = prod(shape)
if "_exps." in name:
expert_params += (size // shape[-3])
expert_sum += shape[-3]
n_expert_tensors += 1
else:
shared_params += size
total_params += size
# Hopefully this should work even for variable-expert-count models
expert_count = (expert_sum // n_expert_tensors) if n_expert_tensors > 0 else 0
# Negate the total to signal it's likely not exact
if last_lora_a is not None:
total_params = -total_params
# NOTE: keep the output in the same order as accepted by 'size_label' in gguf-py/gguf/utility.py
return total_params, shared_params, expert_params, expert_count
def format_shard_names(self, path: Path) -> list[Path]:
if len(self.tensors) == 1:
return [path]
return [path.with_name(SHARD_NAME_FORMAT.format(path.stem, i + 1, len(self.tensors))) for i in range(len(self.tensors))]
def open_output_file(self, path: Path | None = None) -> None:
if self.state is WriterState.EMPTY and self.fout is not None and (path is None or path == self.path):
# allow calling this multiple times as long as the path is the same
return
if self.state is not WriterState.NO_FILE:
raise ValueError(f'Expected output file to be not yet opened, got {self.state}')
if path is not None:
self.path = path
if self.path is not None:
filenames = self.print_plan()
self.fout = [open(filename, "wb") for filename in filenames]
self.state = WriterState.EMPTY
def print_plan(self) -> list[Path]:
logger.info("Writing the following files:")
assert self.path is not None
filenames = self.format_shard_names(self.path)
assert len(filenames) == len(self.tensors)
for name, tensors in zip(filenames, self.tensors):
logger.info(f"{name}: n_tensors = {len(tensors)}, total_size = {GGUFWriter.format_n_bytes_to_str(sum(ti.nbytes for ti in tensors.values()))}")
if self.dry_run:
logger.info("Dry run, not writing files")
for name in filenames:
print(name) # noqa: NP100
exit()
return filenames
def add_shard_kv_data(self) -> None:
if len(self.tensors) == 1:
return
total_tensors = sum(len(t) for t in self.tensors)
assert self.fout is not None
total_splits = len(self.fout)
self.kv_data.extend({} for _ in range(len(self.kv_data), total_splits))
for i, kv_data in enumerate(self.kv_data):
kv_data[Keys.Split.LLM_KV_SPLIT_NO] = GGUFValue(i, GGUFValueType.UINT16)
kv_data[Keys.Split.LLM_KV_SPLIT_COUNT] = GGUFValue(total_splits, GGUFValueType.UINT16)
kv_data[Keys.Split.LLM_KV_SPLIT_TENSORS_COUNT] = GGUFValue(total_tensors, GGUFValueType.INT32)
def write_header_to_file(self, path: Path | None = None) -> None:
if len(self.tensors) == 1 and (self.split_max_tensors != 0 or self.split_max_size != 0):
logger.warning("Model fails split requirements, not splitting")
self.open_output_file(path)
if self.state is not WriterState.EMPTY:
raise ValueError(f'Expected output file to be empty, got {self.state}')
assert self.fout is not None
assert len(self.fout) == len(self.tensors)
assert len(self.kv_data) == 1
self.add_shard_kv_data()
for fout, tensors, kv_data in zip(self.fout, self.tensors, self.kv_data):
fout.write(self._pack("<I", GGUF_MAGIC, skip_pack_prefix = True))
fout.write(self._pack("I", GGUF_VERSION))
fout.write(self._pack("Q", len(tensors)))
fout.write(self._pack("Q", len(kv_data)))
fout.flush()
self.state = WriterState.HEADER
def write_kv_data_to_file(self) -> None:
if self.state is not WriterState.HEADER:
raise ValueError(f'Expected output file to contain the header, got {self.state}')
assert self.fout is not None
for fout, kv_data in zip(self.fout, self.kv_data):
kv_bytes = bytearray()
for key, val in kv_data.items():
kv_bytes += self._pack_val(key, GGUFValueType.STRING, add_vtype=False)
kv_bytes += self._pack_val(val.value, val.type, add_vtype=True)
fout.write(kv_bytes)
self.flush()
self.state = WriterState.KV_DATA
def write_ti_data_to_file(self) -> None:
if self.state is not WriterState.KV_DATA:
raise ValueError(f'Expected output file to contain KV data, got {self.state}')
assert self.fout is not None
for fout, tensors in zip(self.fout, self.tensors):
ti_data = bytearray()
offset_tensor = 0
for name, ti in tensors.items():
ti_data += self._pack_val(name, GGUFValueType.STRING, add_vtype=False)
n_dims = len(ti.shape)
ti_data += self._pack("I", n_dims)
for j in range(n_dims):
ti_data += self._pack("Q", ti.shape[n_dims - 1 - j])
ti_data += self._pack("I", ti.dtype)
ti_data += self._pack("Q", offset_tensor)
offset_tensor += GGUFWriter.ggml_pad(ti.nbytes, self.data_alignment)
fout.write(ti_data)
fout.flush()
self.state = WriterState.TI_DATA
def add_key_value(self, key: str, val: Any, vtype: GGUFValueType) -> None:
if any(key in kv_data for kv_data in self.kv_data):
raise ValueError(f'Duplicated key name {key!r}')
self.kv_data[0][key] = GGUFValue(value=val, type=vtype)
def add_uint8(self, key: str, val: int) -> None:
self.add_key_value(key,val, GGUFValueType.UINT8)
def add_int8(self, key: str, val: int) -> None:
self.add_key_value(key, val, GGUFValueType.INT8)
def add_uint16(self, key: str, val: int) -> None:
self.add_key_value(key, val, GGUFValueType.UINT16)
def add_int16(self, key: str, val: int) -> None:
self.add_key_value(key, val, GGUFValueType.INT16)
def add_uint32(self, key: str, val: int) -> None:
self.add_key_value(key, val, GGUFValueType.UINT32)
def add_int32(self, key: str, val: int) -> None:
self.add_key_value(key, val, GGUFValueType.INT32)
def add_float32(self, key: str, val: float) -> None:
self.add_key_value(key, val, GGUFValueType.FLOAT32)
def add_uint64(self, key: str, val: int) -> None:
self.add_key_value(key, val, GGUFValueType.UINT64)
def add_int64(self, key: str, val: int) -> None:
self.add_key_value(key, val, GGUFValueType.INT64)
def add_float64(self, key: str, val: float) -> None:
self.add_key_value(key, val, GGUFValueType.FLOAT64)
def add_bool(self, key: str, val: bool) -> None:
self.add_key_value(key, val, GGUFValueType.BOOL)
def add_string(self, key: str, val: str) -> None:
if not val:
return
self.add_key_value(key, val, GGUFValueType.STRING)
def add_array(self, key: str, val: Sequence[Any]) -> None:
if len(val) == 0:
return
self.add_key_value(key, val, GGUFValueType.ARRAY)
@staticmethod
def ggml_pad(x: int, n: int) -> int:
return ((x + n - 1) // n) * n
def add_tensor_info(
self, name: str, tensor_shape: Sequence[int], tensor_dtype: np.dtype,
tensor_nbytes: int, raw_dtype: GGMLQuantizationType | None = None,
) -> None:
if self.state is not WriterState.NO_FILE:
raise ValueError(f'Expected output file to be not yet opened, got {self.state}')
if any(name in tensors for tensors in self.tensors):
raise ValueError(f'Duplicated tensor name {name!r}')
if raw_dtype is None:
if tensor_dtype == np.float16:
dtype = GGMLQuantizationType.F16
elif tensor_dtype == np.float32:
dtype = GGMLQuantizationType.F32
elif tensor_dtype == np.float64:
dtype = GGMLQuantizationType.F64
elif tensor_dtype == np.int8:
dtype = GGMLQuantizationType.I8
elif tensor_dtype == np.int16:
dtype = GGMLQuantizationType.I16
elif tensor_dtype == np.int32:
dtype = GGMLQuantizationType.I32
elif tensor_dtype == np.int64:
dtype = GGMLQuantizationType.I64
else:
raise ValueError("Only F16, F32, F64, I8, I16, I32, I64 tensors are supported for now")
else:
dtype = raw_dtype
if tensor_dtype == np.uint8:
tensor_shape = quant_shape_from_byte_shape(tensor_shape, raw_dtype)
# make sure there is at least one tensor before splitting
if len(self.tensors[-1]) > 0:
if ( # split when over tensor limit
self.split_max_tensors != 0
and len(self.tensors[-1]) >= self.split_max_tensors
) or ( # split when over size limit
self.split_max_size != 0
and sum(ti.nbytes for ti in self.tensors[-1].values()) + tensor_nbytes > self.split_max_size
):
self.tensors.append({})
self.tensors[-1][name] = TensorInfo(shape=tensor_shape, dtype=dtype, nbytes=tensor_nbytes)
def add_tensor(
self, name: str, tensor: np.ndarray[Any, Any], raw_shape: Sequence[int] | None = None,
raw_dtype: GGMLQuantizationType | None = None,
) -> None:
if self.endianess == GGUFEndian.BIG:
tensor.byteswap(inplace=True)
if self.use_temp_file and self.temp_file is None:
fp = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256 * 1024 * 1024)
fp.seek(0)
self.temp_file = fp
shape: Sequence[int] = raw_shape if raw_shape is not None else tensor.shape
self.add_tensor_info(name, shape, tensor.dtype, tensor.nbytes, raw_dtype=raw_dtype)
if self.temp_file is None:
self.tensors[-1][name].tensor = tensor
return
tensor.tofile(self.temp_file)
self.write_padding(self.temp_file, tensor.nbytes)
def write_padding(self, fp: IO[bytes], n: int, align: int | None = None) -> None:
pad = GGUFWriter.ggml_pad(n, align if align is not None else self.data_alignment) - n
if pad != 0:
fp.write(bytes([0] * pad))
def write_tensor_data(self, tensor: np.ndarray[Any, Any]) -> None:
if self.state is not WriterState.TI_DATA and self.state is not WriterState.WEIGHTS:
raise ValueError(f'Expected output file to contain tensor info or weights, got {self.state}')
assert self.fout is not None
if self.endianess == GGUFEndian.BIG:
tensor.byteswap(inplace=True)
file_id = -1
for i, tensors in enumerate(self.tensors):
if len(tensors) > 0:
file_id = i
break
fout = self.fout[file_id]
# pop the first tensor info
# TODO: cleaner way to get the first key
first_tensor_name = [name for name, _ in zip(self.tensors[file_id].keys(), range(1))][0]
ti = self.tensors[file_id].pop(first_tensor_name)
assert ti.nbytes == tensor.nbytes
self.write_padding(fout, fout.tell())
tensor.tofile(fout)
self.write_padding(fout, tensor.nbytes)
self.state = WriterState.WEIGHTS
def write_tensors_to_file(self, *, progress: bool = False) -> None:
self.write_ti_data_to_file()
assert self.fout is not None
for fout in self.fout:
self.write_padding(fout, fout.tell())
if self.temp_file is None:
shard_bar = None
bar = None
if progress:
from tqdm import tqdm
total_bytes = sum(ti.nbytes for t in self.tensors for ti in t.values())
if len(self.fout) > 1:
shard_bar = tqdm(desc=f"Shard (0/{len(self.fout)})", total=None, unit="byte", unit_scale=True)
bar = tqdm(desc="Writing", total=total_bytes, unit="byte", unit_scale=True)
for i, (fout, tensors) in enumerate(zip(self.fout, self.tensors)):
if shard_bar is not None:
shard_bar.set_description(f"Shard ({i + 1}/{len(self.fout)})")
total = sum(ti.nbytes for ti in tensors.values())
shard_bar.reset(total=(total if total > 0 else None))
# relying on the fact that Python dicts preserve insertion order (since 3.7)
for ti in tensors.values():
assert ti.tensor is not None # can only iterate once over the tensors
assert ti.tensor.nbytes == ti.nbytes
ti.tensor.tofile(fout)
if shard_bar is not None:
shard_bar.update(ti.nbytes)
if bar is not None:
bar.update(ti.nbytes)
self.write_padding(fout, ti.nbytes)
ti.tensor = None
else:
self.temp_file.seek(0)
shutil.copyfileobj(self.temp_file, self.fout[0 if not self.small_first_shard else 1])
self.flush()
self.temp_file.close()
self.state = WriterState.WEIGHTS
def flush(self) -> None:
assert self.fout is not None
for fout in self.fout:
fout.flush()
def close(self) -> None:
if self.fout is not None:
for fout in self.fout:
fout.close()
self.fout = None
def add_type(self, type_name: str) -> None:
self.add_string(Keys.General.TYPE, type_name)
def add_architecture(self) -> None:
self.add_string(Keys.General.ARCHITECTURE, self.arch)
def add_quantization_version(self, quantization_version: int) -> None:
self.add_uint32(Keys.General.QUANTIZATION_VERSION, quantization_version)
def add_custom_alignment(self, alignment: int) -> None:
self.data_alignment = alignment
self.add_uint32(Keys.General.ALIGNMENT, alignment)
def add_file_type(self, ftype: int) -> None:
self.add_uint32(Keys.General.FILE_TYPE, ftype)
def add_name(self, name: str) -> None:
self.add_string(Keys.General.NAME, name)
def add_author(self, author: str) -> None:
self.add_string(Keys.General.AUTHOR, author)
def add_version(self, version: str) -> None:
self.add_string(Keys.General.VERSION, version)
def add_organization(self, organization: str) -> None:
self.add_string(Keys.General.ORGANIZATION, organization)
def add_finetune(self, finetune: str) -> None:
self.add_string(Keys.General.FINETUNE, finetune)
def add_basename(self, basename: str) -> None:
self.add_string(Keys.General.BASENAME, basename)
def add_description(self, description: str) -> None:
self.add_string(Keys.General.DESCRIPTION, description)
def add_quantized_by(self, quantized: str) -> None:
self.add_string(Keys.General.QUANTIZED_BY, quantized)
def add_size_label(self, size_label: str) -> None:
self.add_string(Keys.General.SIZE_LABEL, size_label)
def add_license(self, license: str) -> None:
self.add_string(Keys.General.LICENSE, license)
def add_license_name(self, license: str) -> None:
self.add_string(Keys.General.LICENSE_NAME, license)
def add_license_link(self, license: str) -> None:
self.add_string(Keys.General.LICENSE_LINK, license)
def add_url(self, url: str) -> None:
self.add_string(Keys.General.URL, url)
def add_doi(self, doi: str) -> None:
self.add_string(Keys.General.DOI, doi)
def add_uuid(self, uuid: str) -> None:
self.add_string(Keys.General.UUID, uuid)
def add_repo_url(self, repo_url: str) -> None:
self.add_string(Keys.General.REPO_URL, repo_url)
def add_source_url(self, url: str) -> None:
self.add_string(Keys.General.SOURCE_URL, url)
def add_source_doi(self, doi: str) -> None:
self.add_string(Keys.General.SOURCE_DOI, doi)
def add_source_uuid(self, uuid: str) -> None:
self.add_string(Keys.General.SOURCE_UUID, uuid)
def add_source_repo_url(self, repo_url: str) -> None:
self.add_string(Keys.General.SOURCE_REPO_URL, repo_url)
def add_base_model_count(self, source_count: int) -> None:
self.add_uint32(Keys.General.BASE_MODEL_COUNT, source_count)
def add_base_model_name(self, source_id: int, name: str) -> None:
self.add_string(Keys.General.BASE_MODEL_NAME.format(id=source_id), name)
def add_base_model_author(self, source_id: int, author: str) -> None:
self.add_string(Keys.General.BASE_MODEL_AUTHOR.format(id=source_id), author)
def add_base_model_version(self, source_id: int, version: str) -> None:
self.add_string(Keys.General.BASE_MODEL_VERSION.format(id=source_id), version)
def add_base_model_organization(self, source_id: int, organization: str) -> None:
self.add_string(Keys.General.BASE_MODEL_ORGANIZATION.format(id=source_id), organization)
def add_base_model_url(self, source_id: int, url: str) -> None:
self.add_string(Keys.General.BASE_MODEL_URL.format(id=source_id), url)
def add_base_model_doi(self, source_id: int, doi: str) -> None:
self.add_string(Keys.General.BASE_MODEL_DOI.format(id=source_id), doi)
def add_base_model_uuid(self, source_id: int, uuid: str) -> None:
self.add_string(Keys.General.BASE_MODEL_UUID.format(id=source_id), uuid)
def add_base_model_repo_url(self, source_id: int, repo_url: str) -> None:
self.add_string(Keys.General.BASE_MODEL_REPO_URL.format(id=source_id), repo_url)
def add_tags(self, tags: Sequence[str]) -> None:
self.add_array(Keys.General.TAGS, tags)
def add_languages(self, languages: Sequence[str]) -> None:
self.add_array(Keys.General.LANGUAGES, languages)
def add_datasets(self, datasets: Sequence[str]) -> None:
self.add_array(Keys.General.DATASETS, datasets)
def add_tensor_data_layout(self, layout: str) -> None:
self.add_string(Keys.LLM.TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)
def add_vocab_size(self, size: int) -> None:
self.add_uint32(Keys.LLM.VOCAB_SIZE.format(arch=self.arch), size)
def add_context_length(self, length: int) -> None:
self.add_uint32(Keys.LLM.CONTEXT_LENGTH.format(arch=self.arch), length)
def add_embedding_length(self, length: int) -> None:
self.add_uint32(Keys.LLM.EMBEDDING_LENGTH.format(arch=self.arch), length)
def add_block_count(self, length: int) -> None:
self.add_uint32(Keys.LLM.BLOCK_COUNT.format(arch=self.arch), length)
def add_leading_dense_block_count(self, length: int) -> None:
self.add_uint32(Keys.LLM.LEADING_DENSE_BLOCK_COUNT.format(arch=self.arch), length)
def add_feed_forward_length(self, length: int | Sequence[int]) -> None:
if isinstance(length, int):
self.add_uint32(Keys.LLM.FEED_FORWARD_LENGTH.format(arch=self.arch), length)
else:
self.add_array(Keys.LLM.FEED_FORWARD_LENGTH.format(arch=self.arch), length)
def add_expert_feed_forward_length(self, length: int) -> None:
self.add_uint32(Keys.LLM.EXPERT_FEED_FORWARD_LENGTH.format(arch=self.arch), length)
def add_expert_shared_feed_forward_length(self, length: int) -> None:
self.add_uint32(Keys.LLM.EXPERT_SHARED_FEED_FORWARD_LENGTH.format(arch=self.arch), length)
def add_parallel_residual(self, use: bool) -> None:
self.add_bool(Keys.LLM.USE_PARALLEL_RESIDUAL.format(arch=self.arch), use)
def add_decoder_start_token_id(self, id: int) -> None:
self.add_uint32(Keys.LLM.DECODER_START_TOKEN_ID.format(arch=self.arch), id)
def add_head_count(self, count: int | Sequence[int]) -> None:
if isinstance(count, int):
self.add_uint32(Keys.Attention.HEAD_COUNT.format(arch=self.arch), count)
else:
self.add_array(Keys.Attention.HEAD_COUNT.format(arch=self.arch), count)
def add_head_count_kv(self, count: int | Sequence[int]) -> None:
if isinstance(count, int):
self.add_uint32(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count)
else:
self.add_array(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count)
def add_key_length(self, length: int) -> None:
self.add_uint32(Keys.Attention.KEY_LENGTH.format(arch=self.arch), length)
def add_value_length(self, length: int) -> None:
self.add_uint32(Keys.Attention.VALUE_LENGTH.format(arch=self.arch), length)
def add_max_alibi_bias(self, bias: float) -> None:
self.add_float32(Keys.Attention.MAX_ALIBI_BIAS.format(arch=self.arch), bias)
def add_clamp_kqv(self, value: float) -> None:
self.add_float32(Keys.Attention.CLAMP_KQV.format(arch=self.arch), value)
def add_logit_scale(self, value: float) -> None:
self.add_float32(Keys.LLM.LOGIT_SCALE.format(arch=self.arch), value)
def add_attn_logit_softcapping(self, value: float) -> None:
self.add_float32(Keys.LLM.ATTN_LOGIT_SOFTCAPPING.format(arch=self.arch), value)
def add_final_logit_softcapping(self, value: float) -> None:
self.add_float32(Keys.LLM.FINAL_LOGIT_SOFTCAPPING.format(arch=self.arch), value)
def add_expert_count(self, count: int) -> None:
self.add_uint32(Keys.LLM.EXPERT_COUNT.format(arch=self.arch), count)
def add_expert_used_count(self, count: int) -> None:
self.add_uint32(Keys.LLM.EXPERT_USED_COUNT.format(arch=self.arch), count)
def add_expert_shared_count(self, count: int) -> None:
self.add_uint32(Keys.LLM.EXPERT_SHARED_COUNT.format(arch=self.arch), count)
def add_expert_weights_scale(self, value: float) -> None:
self.add_float32(Keys.LLM.EXPERT_WEIGHTS_SCALE.format(arch=self.arch), value)
def add_swin_norm(self, value: bool) -> None:
self.add_bool(Keys.LLM.SWIN_NORM.format(arch=self.arch), value)
def add_rescale_every_n_layers(self, count: int) -> None:
self.add_uint32(Keys.LLM.RESCALE_EVERY_N_LAYERS.format(arch=self.arch), count)
def add_time_mix_extra_dim(self, dim: int) -> None:
self.add_uint32(Keys.LLM.TIME_MIX_EXTRA_DIM.format(arch=self.arch), dim)
def add_time_decay_extra_dim(self, dim: int) -> None:
self.add_uint32(Keys.LLM.TIME_DECAY_EXTRA_DIM.format(arch=self.arch), dim)
def add_residual_scale(self, value: float) -> None:
self.add_float32(Keys.LLM.RESIDUAL_SCALE.format(arch=self.arch), value)
def add_embedding_scale(self, value: float) -> None:
self.add_float32(Keys.LLM.EMBEDDING_SCALE.format(arch=self.arch), value)
def add_wkv_head_size(self, size: int) -> None:
self.add_uint32(Keys.WKV.HEAD_SIZE.format(arch=self.arch), size)
def add_layer_norm_eps(self, value: float) -> None:
self.add_float32(Keys.Attention.LAYERNORM_EPS.format(arch=self.arch), value)
def add_layer_norm_rms_eps(self, value: float) -> None:
self.add_float32(Keys.Attention.LAYERNORM_RMS_EPS.format(arch=self.arch), value)
def add_causal_attention(self, value: bool) -> None:
self.add_bool(Keys.Attention.CAUSAL.format(arch=self.arch), value)
def add_q_lora_rank(self, length: int) -> None:
self.add_uint32(Keys.Attention.Q_LORA_RANK.format(arch=self.arch), length)
def add_kv_lora_rank(self, length: int) -> None:
self.add_uint32(Keys.Attention.KV_LORA_RANK.format(arch=self.arch), length)
def add_relative_attn_buckets_count(self, value: int) -> None:
self.add_uint32(Keys.Attention.REL_BUCKETS_COUNT.format(arch=self.arch), value)
def add_sliding_window(self, value: int) -> None:
self.add_uint32(Keys.Attention.SLIDING_WINDOW.format(arch=self.arch), value)
def add_attention_scale(self, value: float) -> None:
self.add_float32(Keys.Attention.SCALE.format(arch=self.arch), value)
def add_pooling_type(self, value: PoolingType) -> None:
self.add_uint32(Keys.LLM.POOLING_TYPE.format(arch=self.arch), value.value)
def add_rope_dimension_count(self, count: int) -> None:
self.add_uint32(Keys.Rope.DIMENSION_COUNT.format(arch=self.arch), count)
def add_rope_freq_base(self, value: float) -> None:
self.add_float32(Keys.Rope.FREQ_BASE.format(arch=self.arch), value)
def add_rope_scaling_type(self, value: RopeScalingType) -> None:
self.add_string(Keys.Rope.SCALING_TYPE.format(arch=self.arch), value.value)
def add_rope_scaling_factor(self, value: float) -> None:
self.add_float32(Keys.Rope.SCALING_FACTOR.format(arch=self.arch), value)
def add_rope_scaling_attn_factors(self, value: float) -> None:
self.add_float32(Keys.Rope.SCALING_ATTN_FACTOR.format(arch=self.arch), value)
def add_rope_scaling_orig_ctx_len(self, value: int) -> None:
self.add_uint32(Keys.Rope.SCALING_ORIG_CTX_LEN.format(arch=self.arch), value)
def add_rope_scaling_finetuned(self, value: bool) -> None:
self.add_bool(Keys.Rope.SCALING_FINETUNED.format(arch=self.arch), value)
def add_rope_scaling_yarn_log_mul(self, value: float) -> None:
self.add_float32(Keys.Rope.SCALING_YARN_LOG_MUL.format(arch=self.arch), value)
def add_ssm_conv_kernel(self, value: int) -> None:
self.add_uint32(Keys.SSM.CONV_KERNEL.format(arch=self.arch), value)
def add_ssm_inner_size(self, value: int) -> None:
self.add_uint32(Keys.SSM.INNER_SIZE.format(arch=self.arch), value)
def add_ssm_state_size(self, value: int) -> None:
self.add_uint32(Keys.SSM.STATE_SIZE.format(arch=self.arch), value)
def add_ssm_time_step_rank(self, value: int) -> None:
self.add_uint32(Keys.SSM.TIME_STEP_RANK.format(arch=self.arch), value)
def add_ssm_dt_b_c_rms(self, value: bool) -> None:
self.add_bool(Keys.SSM.DT_B_C_RMS.format(arch=self.arch), value)
def add_tokenizer_model(self, model: str) -> None:
self.add_string(Keys.Tokenizer.MODEL, model)
def add_tokenizer_pre(self, pre: str) -> None:
self.add_string(Keys.Tokenizer.PRE, pre)
def add_token_list(self, tokens: Sequence[str] | Sequence[bytes] | Sequence[bytearray]) -> None:
self.add_array(Keys.Tokenizer.LIST, tokens)
def add_token_merges(self, merges: Sequence[str] | Sequence[bytes] | Sequence[bytearray]) -> None:
self.add_array(Keys.Tokenizer.MERGES, merges)
def add_token_types(self, types: Sequence[TokenType] | Sequence[int]) -> None:
self.add_array(Keys.Tokenizer.TOKEN_TYPE, types)
def add_token_type_count(self, value: int) -> None:
self.add_uint32(Keys.Tokenizer.TOKEN_TYPE_COUNT, value)
def add_token_scores(self, scores: Sequence[float]) -> None:
self.add_array(Keys.Tokenizer.SCORES, scores)
def add_bos_token_id(self, id: int) -> None:
self.add_uint32(Keys.Tokenizer.BOS_ID, id)
def add_eos_token_id(self, id: int) -> None:
self.add_uint32(Keys.Tokenizer.EOS_ID, id)
def add_unk_token_id(self, id: int) -> None:
self.add_uint32(Keys.Tokenizer.UNK_ID, id)
def add_sep_token_id(self, id: int) -> None:
self.add_uint32(Keys.Tokenizer.SEP_ID, id)
def add_pad_token_id(self, id: int) -> None:
self.add_uint32(Keys.Tokenizer.PAD_ID, id)
def add_cls_token_id(self, id: int) -> None:
self.add_uint32(Keys.Tokenizer.CLS_ID, id)
def add_mask_token_id(self, id: int) -> None:
self.add_uint32(Keys.Tokenizer.MASK_ID, id)
def add_add_bos_token(self, value: bool) -> None:
self.add_bool(Keys.Tokenizer.ADD_BOS, value)
def add_add_eos_token(self, value: bool) -> None:
self.add_bool(Keys.Tokenizer.ADD_EOS, value)
def add_add_space_prefix(self, value: bool) -> None:
self.add_bool(Keys.Tokenizer.ADD_PREFIX, value)
def add_remove_extra_whitespaces(self, value: bool) -> None:
self.add_bool(Keys.Tokenizer.REMOVE_EXTRA_WS, value)
def add_precompiled_charsmap(self, charsmap: Sequence[bytes]) -> None:
self.add_array(Keys.Tokenizer.PRECOMPILED_CHARSMAP, charsmap)
def add_chat_template(self, value: str | Sequence[Mapping[str, str]]) -> None:
if not isinstance(value, str):
template_default = None
template_names = set()
for choice in value:
name = choice.get('name', '')
template = choice.get('template')
# Allowing non-alphanumerical characters in template name is probably not a good idea, so filter it
name = ''.join((c if c in ascii_letters + digits else '_' for c in name))
if name and template is not None:
if name == 'default':
template_default = template
else:
template_names.add(name)
self.add_string(Keys.Tokenizer.CHAT_TEMPLATE_N.format(name=name), template)
if template_names:
self.add_array(Keys.Tokenizer.CHAT_TEMPLATES, list(template_names))
if template_default is None:
return
value = template_default
self.add_string(Keys.Tokenizer.CHAT_TEMPLATE, value)
def add_eot_token_id(self, id: int) -> None:
self.add_uint32(Keys.Tokenizer.EOT_ID, id)
def add_eom_token_id(self, id: int) -> None:
self.add_uint32(Keys.Tokenizer.EOM_ID, id)
def _pack(self, fmt: str, value: Any, skip_pack_prefix: bool = False) -> bytes:
pack_prefix = ''
if not skip_pack_prefix:
pack_prefix = '<' if self.endianess == GGUFEndian.LITTLE else '>'
return struct.pack(f'{pack_prefix}{fmt}', value)
def _pack_val(self, val: Any, vtype: GGUFValueType, add_vtype: bool) -> bytes:
kv_data = bytearray()
if add_vtype:
kv_data += self._pack("I", vtype)
pack_fmt = self._simple_value_packing.get(vtype)
if pack_fmt is not None:
kv_data += self._pack(pack_fmt, val, skip_pack_prefix = vtype == GGUFValueType.BOOL)
elif vtype == GGUFValueType.STRING:
encoded_val = val.encode("utf-8") if isinstance(val, str) else val
kv_data += self._pack("Q", len(encoded_val))
kv_data += encoded_val
elif vtype == GGUFValueType.ARRAY:
if not isinstance(val, Sequence):
raise ValueError("Invalid GGUF metadata array, expecting sequence")
if len(val) == 0:
raise ValueError("Invalid GGUF metadata array. Empty array")
if isinstance(val, bytes):
ltype = GGUFValueType.UINT8
else:
ltype = GGUFValueType.get_type(val[0])
if not all(GGUFValueType.get_type(i) is ltype for i in val[1:]):
raise ValueError("All items in a GGUF array should be of the same type")
kv_data += self._pack("I", ltype)
kv_data += self._pack("Q", len(val))
for item in val:
kv_data += self._pack_val(item, ltype, add_vtype=False)
else:
raise ValueError("Invalid GGUF metadata value type or value")
return kv_data
@staticmethod
def format_n_bytes_to_str(num: int) -> str:
if num == 0:
return "negligible - metadata only"
fnum = float(num)
for unit in ("", "K", "M", "G"):
if abs(fnum) < 1000.0:
return f"{fnum:3.1f}{unit}"
fnum /= 1000.0
return f"{fnum:.1f}T - over 1TB, split recommended"
|