File size: 21,934 Bytes
57e3690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
#!/usr/bin/env python3
from __future__ import annotations

import logging
import argparse
import os
import re
import sys
from pathlib import Path
from typing import Any

import numpy as np

# Necessary to load the local gguf package
if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent / 'gguf-py').exists():
    sys.path.insert(0, str(Path(__file__).parent.parent))

from gguf import GGUFReader, GGUFValueType, ReaderTensor  # noqa: E402

logger = logging.getLogger("gguf-dump")


def get_file_host_endian(reader: GGUFReader) -> tuple[str, str]:
    host_endian = 'LITTLE' if np.uint32(1) == np.uint32(1).newbyteorder("<") else 'BIG'
    if reader.byte_order == 'S':
        file_endian = 'BIG' if host_endian == 'LITTLE' else 'LITTLE'
    else:
        file_endian = host_endian
    return (host_endian, file_endian)


# For more information about what field.parts and field.data represent,
# please see the comments in the modify_gguf.py example.
def dump_metadata(reader: GGUFReader, args: argparse.Namespace) -> None:
    host_endian, file_endian = get_file_host_endian(reader)
    print(f'* File is {file_endian} endian, script is running on a {host_endian} endian host.')  # noqa: NP100
    print(f'* Dumping {len(reader.fields)} key/value pair(s)')  # noqa: NP100
    for n, field in enumerate(reader.fields.values(), 1):
        if not field.types:
            pretty_type = 'N/A'
        elif field.types[0] == GGUFValueType.ARRAY:
            nest_count = len(field.types) - 1
            pretty_type = '[' * nest_count + str(field.types[-1].name) + ']' * nest_count
        else:
            pretty_type = str(field.types[-1].name)

        log_message = f'  {n:5}: {pretty_type:10} | {len(field.data):8} | {field.name}'
        if len(field.types) == 1:
            curr_type = field.types[0]
            if curr_type == GGUFValueType.STRING:
                log_message += ' = {0}'.format(repr(str(bytes(field.parts[-1]), encoding='utf-8')[:60]))
            elif field.types[0] in reader.gguf_scalar_to_np:
                log_message += ' = {0}'.format(field.parts[-1][0])
        print(log_message)  # noqa: NP100
    if args.no_tensors:
        return
    print(f'* Dumping {len(reader.tensors)} tensor(s)')  # noqa: NP100
    for n, tensor in enumerate(reader.tensors, 1):
        prettydims = ', '.join('{0:5}'.format(d) for d in list(tensor.shape) + [1] * (4 - len(tensor.shape)))
        print(f'  {n:5}: {tensor.n_elements:10} | {prettydims} | {tensor.tensor_type.name:7} | {tensor.name}')  # noqa: NP100


def dump_metadata_json(reader: GGUFReader, args: argparse.Namespace) -> None:
    import json
    host_endian, file_endian = get_file_host_endian(reader)
    metadata: dict[str, Any] = {}
    tensors: dict[str, Any] = {}
    result = {
        "filename": args.model,
        "endian": file_endian,
        "metadata": metadata,
        "tensors": tensors,
    }
    for idx, field in enumerate(reader.fields.values()):
        curr: dict[str, Any] = {
            "index": idx,
            "type": field.types[0].name if field.types else 'UNKNOWN',
            "offset": field.offset,
        }
        metadata[field.name] = curr
        if field.types[:1] == [GGUFValueType.ARRAY]:
            curr["array_types"] = [t.name for t in field.types][1:]
            if not args.json_array:
                continue
            itype = field.types[-1]
            if itype == GGUFValueType.STRING:
                curr["value"] = [str(bytes(field.parts[idx]), encoding="utf-8") for idx in field.data]
            else:
                curr["value"] = [pv for idx in field.data for pv in field.parts[idx].tolist()]
        elif field.types[0] == GGUFValueType.STRING:
            curr["value"] = str(bytes(field.parts[-1]), encoding="utf-8")
        else:
            curr["value"] = field.parts[-1].tolist()[0]
    if not args.no_tensors:
        for idx, tensor in enumerate(reader.tensors):
            tensors[tensor.name] = {
                "index": idx,
                "shape": tensor.shape.tolist(),
                "type": tensor.tensor_type.name,
                "offset": tensor.field.offset,
            }
    json.dump(result, sys.stdout)


def markdown_table_with_alignment_support(header_map: list[dict[str, str]], data: list[dict[str, Any]]):
    # JSON to Markdown table formatting: https://stackoverflow.com/a/72983854/2850957

    # Alignment Utility Function
    def strAlign(padding: int, alignMode: str | None, strVal: str):
        if alignMode == 'center':
            return strVal.center(padding)
        elif alignMode == 'right':
            return strVal.rjust(padding - 1) + ' '
        elif alignMode == 'left':
            return ' ' + strVal.ljust(padding - 1)
        else: # default left
            return ' ' + strVal.ljust(padding - 1)

    def dashAlign(padding: int, alignMode: str | None):
        if alignMode == 'center':
            return ':' + '-' * (padding - 2) + ':'
        elif alignMode == 'right':
            return '-' * (padding - 1) + ':'
        elif alignMode == 'left':
            return ':' + '-' * (padding - 1)
        else: # default left
            return '-' * (padding)

    # Calculate Padding For Each Column Based On Header and Data Length
    rowsPadding = {}
    for index, columnEntry in enumerate(header_map):
        padCount = max([len(str(v)) for d in data for k, v in d.items() if k == columnEntry['key_name']], default=0) + 2
        headerPadCount = len(columnEntry['header_name']) + 2
        rowsPadding[index] = headerPadCount if padCount <= headerPadCount else padCount

    # Render Markdown Header
    rows = []
    rows.append('|'.join(strAlign(rowsPadding[index], columnEntry.get('align'), str(columnEntry['header_name'])) for index, columnEntry in enumerate(header_map)))
    rows.append('|'.join(dashAlign(rowsPadding[index], columnEntry.get('align')) for index, columnEntry in enumerate(header_map)))

    # Render Tabular Data
    for item in data:
        rows.append('|'.join(strAlign(rowsPadding[index], columnEntry.get('align'), str(item[columnEntry['key_name']])) for index, columnEntry in enumerate(header_map)))

    # Convert Tabular String Rows Into String
    tableString = ""
    for row in rows:
        tableString += f'|{row}|\n'

    return tableString


def element_count_rounded_notation(count: int) -> str:
    if count > 1e15 :
        # Quadrillion
        scaled_amount = count * 1e-15
        scale_suffix = "Q"
    elif count > 1e12 :
        # Trillions
        scaled_amount = count * 1e-12
        scale_suffix = "T"
    elif count > 1e9 :
        # Billions
        scaled_amount = count * 1e-9
        scale_suffix = "B"
    elif count > 1e6 :
        # Millions
        scaled_amount = count * 1e-6
        scale_suffix = "M"
    elif count > 1e3 :
        # Thousands
        scaled_amount = count * 1e-3
        scale_suffix = "K"
    else:
        # Under Thousands
        scaled_amount = count
        scale_suffix = ""
    return f"{'~' if count > 1e3 else ''}{round(scaled_amount)}{scale_suffix}"


def translate_tensor_name(name):
    words = name.split(".")

    # Source: https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#standardized-tensor-names
    abbreviation_dictionary = {
        'token_embd': 'Token embedding',
        'pos_embd': 'Position embedding',
        'output_norm': 'Output normalization',
        'output': 'Output',
        'attn_norm': 'Attention normalization',
        'attn_norm_2': 'Attention normalization',
        'attn_qkv': 'Attention query-key-value',
        'attn_q': 'Attention query',
        'attn_k': 'Attention key',
        'attn_v': 'Attention value',
        'attn_output': 'Attention output',
        'ffn_norm': 'Feed-forward network normalization',
        'ffn_up': 'Feed-forward network "up"',
        'ffn_gate': 'Feed-forward network "gate"',
        'ffn_down': 'Feed-forward network "down"',
        'ffn_gate_inp': 'Expert-routing layer for the Feed-forward network in Mixture of Expert models',
        'ffn_gate_exp': 'Feed-forward network "gate" layer per expert in Mixture of Expert models',
        'ffn_down_exp': 'Feed-forward network "down" layer per expert in Mixture of Expert models',
        'ffn_up_exp': 'Feed-forward network "up" layer per expert in Mixture of Expert models',
        'ssm_in': 'State space model input projections',
        'ssm_conv1d': 'State space model rolling/shift',
        'ssm_x': 'State space model selective parametrization',
        'ssm_a': 'State space model state compression',
        'ssm_d': 'State space model skip connection',
        'ssm_dt': 'State space model time step',
        'ssm_out': 'State space model output projection',
        'blk': 'Block',
        'enc': 'Encoder',
        'dec': 'Decoder',
    }

    expanded_words = []
    for word in words:
        word_norm = word.strip().lower()
        if word_norm in abbreviation_dictionary:
            expanded_words.append(abbreviation_dictionary[word_norm].title())
        else:
            expanded_words.append(word.title())

    return ' '.join(expanded_words)


def dump_markdown_metadata(reader: GGUFReader, args: argparse.Namespace) -> None:
    host_endian, file_endian = get_file_host_endian(reader)
    markdown_content = ""
    markdown_content += f'# {args.model} - GGUF Internal File Dump\n\n'
    markdown_content += f'- Endian: {file_endian} endian\n'
    markdown_content += '\n'
    markdown_content += '## Key Value Metadata Store\n\n'
    markdown_content += f'There are {len(reader.fields)} key-value pairs in this file\n'
    markdown_content += '\n'

    kv_dump_table: list[dict[str, str | int]] = []
    for n, field in enumerate(reader.fields.values(), 1):
        if not field.types:
            pretty_type = 'N/A'
        elif field.types[0] == GGUFValueType.ARRAY:
            nest_count = len(field.types) - 1
            pretty_type = '[' * nest_count + str(field.types[-1].name) + ']' * nest_count
        else:
            pretty_type = str(field.types[-1].name)

        def escape_markdown_inline_code(value_string):
            # Find the longest contiguous sequence of backticks in the string then
            # wrap string with appropriate number of backticks required to escape it
            max_backticks = max((len(match.group(0)) for match in re.finditer(r'`+', value_string)), default=0)
            inline_code_marker = '`' * (max_backticks + 1)

            # If the string starts or ends with a backtick, add a space at the beginning and end
            if value_string.startswith('`') or value_string.endswith('`'):
                value_string = f" {value_string} "

            return f"{inline_code_marker}{value_string}{inline_code_marker}"

        total_elements = len(field.data)
        value = ""
        if len(field.types) == 1:
            curr_type = field.types[0]
            if curr_type == GGUFValueType.STRING:
                truncate_length = 60
                value_string = str(bytes(field.parts[-1]), encoding='utf-8')
                if len(value_string) > truncate_length:
                    head = escape_markdown_inline_code(value_string[:truncate_length // 2])
                    tail = escape_markdown_inline_code(value_string[-truncate_length // 2:])
                    value = "{head}...{tail}".format(head=head, tail=tail)
                else:
                    value = escape_markdown_inline_code(value_string)
            elif curr_type in reader.gguf_scalar_to_np:
                value = str(field.parts[-1][0])
        else:
            if field.types[0] == GGUFValueType.ARRAY:
                curr_type = field.types[1]
                array_elements = []

                if curr_type == GGUFValueType.STRING:
                    render_element = min(5, total_elements)
                    for element_pos in range(render_element):
                        truncate_length = 30
                        value_string = str(bytes(field.parts[-1 - (total_elements - element_pos - 1) * 2]), encoding='utf-8')
                        if len(value_string) > truncate_length:
                            head = escape_markdown_inline_code(value_string[:truncate_length // 2])
                            tail = escape_markdown_inline_code(value_string[-truncate_length // 2:])
                            value = "{head}...{tail}".format(head=head, tail=tail)
                        else:
                            value = escape_markdown_inline_code(value_string)
                        array_elements.append(value)

                elif curr_type in reader.gguf_scalar_to_np:
                    render_element = min(7, total_elements)
                    for element_pos in range(render_element):
                        array_elements.append(str(field.parts[-1 - (total_elements - element_pos - 1)][0]))

                value = f'[ {", ".join(array_elements).strip()}{", ..." if total_elements > len(array_elements) else ""} ]'

        kv_dump_table.append({"n":n, "pretty_type":pretty_type, "total_elements":total_elements, "field_name":field.name, "value":value})

    kv_dump_table_header_map = [
        {'key_name':'n',                'header_name':'POS',      'align':'right'},
        {'key_name':'pretty_type',      'header_name':'TYPE',     'align':'left'},
        {'key_name':'total_elements',   'header_name':'Count',    'align':'right'},
        {'key_name':'field_name',       'header_name':'Key',      'align':'left'},
        {'key_name':'value',            'header_name':'Value',    'align':'left'},
    ]

    markdown_content += markdown_table_with_alignment_support(kv_dump_table_header_map, kv_dump_table)

    markdown_content += "\n"

    if not args.no_tensors:
        # Group tensors by their prefix and maintain order
        tensor_prefix_order: list[str] = []
        tensor_name_to_key: dict[str, int] = {}
        tensor_groups: dict[str, list[ReaderTensor]] = {}
        total_elements = sum(tensor.n_elements for tensor in reader.tensors)

        # Parsing Tensors Record
        for key, tensor in enumerate(reader.tensors):
            tensor_components = tensor.name.split('.')

            # Classify Tensor Group
            tensor_group_name = "base"
            if tensor_components[0] == 'blk':
                tensor_group_name = f"{tensor_components[0]}.{tensor_components[1]}"
            elif tensor_components[0] in ['enc', 'dec'] and tensor_components[1] == 'blk':
                tensor_group_name = f"{tensor_components[0]}.{tensor_components[1]}.{tensor_components[2]}"
            elif tensor_components[0] in ['enc', 'dec']:
                tensor_group_name = f"{tensor_components[0]}"

            # Check if new Tensor Group
            if tensor_group_name not in tensor_groups:
                tensor_groups[tensor_group_name] = []
                tensor_prefix_order.append(tensor_group_name)

            # Record Tensor and Tensor Position
            tensor_groups[tensor_group_name].append(tensor)
            tensor_name_to_key[tensor.name] = key

        # Tensors Mapping Dump
        markdown_content += f'## Tensors Overview {element_count_rounded_notation(total_elements)} Elements\n\n'
        markdown_content += f'Total number of elements in all tensors: {total_elements} Elements\n'
        markdown_content += '\n'

        for group in tensor_prefix_order:
            tensors = tensor_groups[group]
            group_elements = sum(tensor.n_elements for tensor in tensors)
            markdown_content += f"- [{translate_tensor_name(group)} Tensor Group - {element_count_rounded_notation(group_elements)} Elements](#{group.replace('.', '_')})\n"

        markdown_content += "\n"

        markdown_content += "### Tensor Data Offset\n"
        markdown_content += '\n'
        markdown_content += 'This table contains the offset and data segment relative to start of file\n'
        markdown_content += '\n'

        tensor_mapping_table: list[dict[str, str | int]] = []
        for key, tensor in enumerate(reader.tensors):
            data_offset_pretty = '{0:#16x}'.format(tensor.data_offset)
            data_size_pretty = '{0:#16x}'.format(tensor.n_bytes)
            tensor_mapping_table.append({"t_id":key, "layer_name":tensor.name, "data_offset":data_offset_pretty, "data_size":data_size_pretty})

        tensors_mapping_table_header_map = [
            {'key_name':'t_id',         'header_name':'T_ID',               'align':'right'},
            {'key_name':'layer_name',   'header_name':'Tensor Layer Name',  'align':'left'},
            {'key_name':'data_offset',  'header_name':'Data Offset (B)',    'align':'right'},
            {'key_name':'data_size',    'header_name':'Data Size (B)',      'align':'right'},
        ]

        markdown_content += markdown_table_with_alignment_support(tensors_mapping_table_header_map, tensor_mapping_table)
        markdown_content += "\n"

        for group in tensor_prefix_order:
            tensors = tensor_groups[group]
            group_elements = sum(tensor.n_elements for tensor in tensors)
            group_percentage = group_elements / total_elements * 100
            markdown_content += f"### <a name=\"{group.replace('.', '_')}\">{translate_tensor_name(group)} Tensor Group : {element_count_rounded_notation(group_elements)} Elements</a>\n\n"

            # Precalculate column sizing for visual consistency
            prettify_element_est_count_size: int = 1
            prettify_element_count_size: int = 1
            prettify_dimension_max_widths: dict[int, int] = {}
            for tensor in tensors:
                prettify_element_est_count_size = max(prettify_element_est_count_size, len(str(element_count_rounded_notation(tensor.n_elements))))
                prettify_element_count_size = max(prettify_element_count_size, len(str(tensor.n_elements)))
                for i, dimension_size in enumerate(list(tensor.shape) + [1] * (4 - len(tensor.shape))):
                    prettify_dimension_max_widths[i] = max(prettify_dimension_max_widths.get(i,1), len(str(dimension_size)))

            # Generate Tensor Layer Table Content
            tensor_dump_table: list[dict[str, str | int]] = []
            for tensor in tensors:
                human_friendly_name = translate_tensor_name(tensor.name.replace(".weight", ".(W)").replace(".bias", ".(B)"))
                pretty_dimension = ' x '.join(f'{str(d):>{prettify_dimension_max_widths[i]}}' for i, d in enumerate(list(tensor.shape) + [1] * (4 - len(tensor.shape))))
                element_count_est = f"({element_count_rounded_notation(tensor.n_elements):>{prettify_element_est_count_size}})"
                element_count_string = f"{element_count_est} {tensor.n_elements:>{prettify_element_count_size}}"
                type_name_string = f"{tensor.tensor_type.name}"
                tensor_dump_table.append({"t_id":tensor_name_to_key[tensor.name], "layer_name":tensor.name, "human_layer_name":human_friendly_name, "element_count":element_count_string, "pretty_dimension":pretty_dimension, "tensor_type":type_name_string})

            tensor_dump_table_header_map = [
                {'key_name':'t_id',             'header_name':'T_ID',                             'align':'right'},
                {'key_name':'layer_name',       'header_name':'Tensor Layer Name',                'align':'left'},
                {'key_name':'human_layer_name', 'header_name':'Human Friendly Tensor Layer Name', 'align':'left'},
                {'key_name':'element_count',    'header_name':'Elements',                         'align':'left'},
                {'key_name':'pretty_dimension', 'header_name':'Shape',                            'align':'left'},
                {'key_name':'tensor_type',      'header_name':'Type',                             'align':'left'},
            ]

            markdown_content += markdown_table_with_alignment_support(tensor_dump_table_header_map, tensor_dump_table)

            markdown_content += "\n"
            markdown_content += f"- Total elements in {group}: ({element_count_rounded_notation(group_elements):>4}) {group_elements}\n"
            markdown_content += f"- Percentage of total elements: {group_percentage:.2f}%\n"
            markdown_content += "\n\n"

    print(markdown_content)  # noqa: NP100


def main() -> None:
    parser = argparse.ArgumentParser(description="Dump GGUF file metadata")
    parser.add_argument("model",           type=str,            help="GGUF format model filename")
    parser.add_argument("--no-tensors", action="store_true", help="Don't dump tensor metadata")
    parser.add_argument("--json",       action="store_true", help="Produce JSON output")
    parser.add_argument("--json-array", action="store_true", help="Include full array values in JSON output (long)")
    parser.add_argument("--data-offset",    action="store_true", help="Start of data offset")
    parser.add_argument("--data-alignment", action="store_true", help="Data alignment applied globally to data field")
    parser.add_argument("--markdown",   action="store_true", help="Produce markdown output")
    parser.add_argument("--verbose",    action="store_true", help="increase output verbosity")

    args = parser.parse_args(None if len(sys.argv) > 1 else ["--help"])

    logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)

    if not args.json and not args.markdown and not args.data_offset and not args.data_alignment:
        logger.info(f'* Loading: {args.model}')

    reader = GGUFReader(args.model, 'r')

    if args.json:
        dump_metadata_json(reader, args)
    elif args.markdown:
        dump_markdown_metadata(reader, args)
    elif args.data_offset:
        print(reader.data_offset)  # noqa: NP100
    elif args.data_alignment:
        print(reader.alignment)  # noqa: NP100
    else:
        dump_metadata(reader, args)


if __name__ == '__main__':
    main()