File size: 61,482 Bytes
57e3690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
#ifndef LLAMA_H
#define LLAMA_H

#include "ggml.h"
#include "ggml-cpu.h"
#include "ggml-backend.h"

#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdbool.h>

#ifdef LLAMA_SHARED
#    if defined(_WIN32) && !defined(__MINGW32__)
#        ifdef LLAMA_BUILD
#            define LLAMA_API __declspec(dllexport)
#        else
#            define LLAMA_API __declspec(dllimport)
#        endif
#    else
#        define LLAMA_API __attribute__ ((visibility ("default")))
#    endif
#else
#    define LLAMA_API
#endif

#ifdef __GNUC__
#    define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
#elif defined(_MSC_VER)
#    define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
#else
#    define DEPRECATED(func, hint) func
#endif

#define LLAMA_DEFAULT_SEED 0xFFFFFFFF

// TODO: use everywhere in the implementation
#define LLAMA_TOKEN_NULL -1

#define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
#define LLAMA_FILE_MAGIC_GGSQ 0x67677371u // 'ggsq'

#define LLAMA_SESSION_MAGIC   LLAMA_FILE_MAGIC_GGSN
#define LLAMA_SESSION_VERSION 9

#define LLAMA_STATE_SEQ_MAGIC   LLAMA_FILE_MAGIC_GGSQ
#define LLAMA_STATE_SEQ_VERSION 2

#ifdef __cplusplus
extern "C" {
#endif

    //
    // C interface
    //
    // TODO: show sample usage
    //

    // struct llama_vocab; // TODO: add in the future
    struct llama_model;
    struct llama_context;
    struct llama_sampler;

    typedef int32_t llama_pos;
    typedef int32_t llama_token;
    typedef int32_t llama_seq_id;

    enum llama_vocab_type {
        LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab
        LLAMA_VOCAB_TYPE_SPM  = 1, // LLaMA tokenizer based on byte-level BPE with byte fallback
        LLAMA_VOCAB_TYPE_BPE  = 2, // GPT-2 tokenizer based on byte-level BPE
        LLAMA_VOCAB_TYPE_WPM  = 3, // BERT tokenizer based on WordPiece
        LLAMA_VOCAB_TYPE_UGM  = 4, // T5 tokenizer based on Unigram
        LLAMA_VOCAB_TYPE_RWKV = 5, // RWKV tokenizer based on greedy tokenization
    };

    // pre-tokenization types
    enum llama_vocab_pre_type {
        LLAMA_VOCAB_PRE_TYPE_DEFAULT        = 0,
        LLAMA_VOCAB_PRE_TYPE_LLAMA3         = 1,
        LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM   = 2,
        LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3,
        LLAMA_VOCAB_PRE_TYPE_FALCON         = 4,
        LLAMA_VOCAB_PRE_TYPE_MPT            = 5,
        LLAMA_VOCAB_PRE_TYPE_STARCODER      = 6,
        LLAMA_VOCAB_PRE_TYPE_GPT2           = 7,
        LLAMA_VOCAB_PRE_TYPE_REFACT         = 8,
        LLAMA_VOCAB_PRE_TYPE_COMMAND_R      = 9,
        LLAMA_VOCAB_PRE_TYPE_STABLELM2      = 10,
        LLAMA_VOCAB_PRE_TYPE_QWEN2          = 11,
        LLAMA_VOCAB_PRE_TYPE_OLMO           = 12,
        LLAMA_VOCAB_PRE_TYPE_DBRX           = 13,
        LLAMA_VOCAB_PRE_TYPE_SMAUG          = 14,
        LLAMA_VOCAB_PRE_TYPE_PORO           = 15,
        LLAMA_VOCAB_PRE_TYPE_CHATGLM3       = 16,
        LLAMA_VOCAB_PRE_TYPE_CHATGLM4       = 17,
        LLAMA_VOCAB_PRE_TYPE_VIKING         = 18,
        LLAMA_VOCAB_PRE_TYPE_JAIS           = 19,
        LLAMA_VOCAB_PRE_TYPE_TEKKEN         = 20,
        LLAMA_VOCAB_PRE_TYPE_SMOLLM         = 21,
        LLAMA_VOCAB_PRE_TYPE_CODESHELL      = 22,
        LLAMA_VOCAB_PRE_TYPE_BLOOM          = 23,
        LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH   = 24,
        LLAMA_VOCAB_PRE_TYPE_EXAONE         = 25,
        LLAMA_VOCAB_PRE_TYPE_CHAMELEON      = 26,
    };

    enum llama_rope_type {
        LLAMA_ROPE_TYPE_NONE = -1,
        LLAMA_ROPE_TYPE_NORM = 0,
        LLAMA_ROPE_TYPE_NEOX = GGML_ROPE_TYPE_NEOX,
    };

    enum llama_token_type { //TODO: remove, required until per token attributes are available from GGUF file
        LLAMA_TOKEN_TYPE_UNDEFINED    = 0,
        LLAMA_TOKEN_TYPE_NORMAL       = 1,
        LLAMA_TOKEN_TYPE_UNKNOWN      = 2,
        LLAMA_TOKEN_TYPE_CONTROL      = 3,
        LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
        LLAMA_TOKEN_TYPE_UNUSED       = 5,
        LLAMA_TOKEN_TYPE_BYTE         = 6,
    };

    enum llama_token_attr {
        LLAMA_TOKEN_ATTR_UNDEFINED    = 0,
        LLAMA_TOKEN_ATTR_UNKNOWN      = 1 << 0,
        LLAMA_TOKEN_ATTR_UNUSED       = 1 << 1,
        LLAMA_TOKEN_ATTR_NORMAL       = 1 << 2,
        LLAMA_TOKEN_ATTR_CONTROL      = 1 << 3,  // SPECIAL?
        LLAMA_TOKEN_ATTR_USER_DEFINED = 1 << 4,
        LLAMA_TOKEN_ATTR_BYTE         = 1 << 5,
        LLAMA_TOKEN_ATTR_NORMALIZED   = 1 << 6,
        LLAMA_TOKEN_ATTR_LSTRIP       = 1 << 7,
        LLAMA_TOKEN_ATTR_RSTRIP       = 1 << 8,
        LLAMA_TOKEN_ATTR_SINGLE_WORD  = 1 << 9,
    };

    // model file types
    enum llama_ftype {
        LLAMA_FTYPE_ALL_F32              = 0,
        LLAMA_FTYPE_MOSTLY_F16           = 1,  // except 1d tensors
        LLAMA_FTYPE_MOSTLY_Q4_0          = 2,  // except 1d tensors
        LLAMA_FTYPE_MOSTLY_Q4_1          = 3,  // except 1d tensors
        // LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4,  // tok_embeddings.weight and output.weight are F16
        // LLAMA_FTYPE_MOSTLY_Q4_2       = 5,  // support has been removed
        // LLAMA_FTYPE_MOSTLY_Q4_3       = 6,  // support has been removed
        LLAMA_FTYPE_MOSTLY_Q8_0          = 7,  // except 1d tensors
        LLAMA_FTYPE_MOSTLY_Q5_0          = 8,  // except 1d tensors
        LLAMA_FTYPE_MOSTLY_Q5_1          = 9,  // except 1d tensors
        LLAMA_FTYPE_MOSTLY_Q2_K          = 10, // except 1d tensors
        LLAMA_FTYPE_MOSTLY_Q3_K_S        = 11, // except 1d tensors
        LLAMA_FTYPE_MOSTLY_Q3_K_M        = 12, // except 1d tensors
        LLAMA_FTYPE_MOSTLY_Q3_K_L        = 13, // except 1d tensors
        LLAMA_FTYPE_MOSTLY_Q4_K_S        = 14, // except 1d tensors
        LLAMA_FTYPE_MOSTLY_Q4_K_M        = 15, // except 1d tensors
        LLAMA_FTYPE_MOSTLY_Q5_K_S        = 16, // except 1d tensors
        LLAMA_FTYPE_MOSTLY_Q5_K_M        = 17, // except 1d tensors
        LLAMA_FTYPE_MOSTLY_Q6_K          = 18, // except 1d tensors
        LLAMA_FTYPE_MOSTLY_IQ2_XXS       = 19, // except 1d tensors
        LLAMA_FTYPE_MOSTLY_IQ2_XS        = 20, // except 1d tensors
        LLAMA_FTYPE_MOSTLY_Q2_K_S        = 21, // except 1d tensors
        LLAMA_FTYPE_MOSTLY_IQ3_XS        = 22, // except 1d tensors
        LLAMA_FTYPE_MOSTLY_IQ3_XXS       = 23, // except 1d tensors
        LLAMA_FTYPE_MOSTLY_IQ1_S         = 24, // except 1d tensors
        LLAMA_FTYPE_MOSTLY_IQ4_NL        = 25, // except 1d tensors
        LLAMA_FTYPE_MOSTLY_IQ3_S         = 26, // except 1d tensors
        LLAMA_FTYPE_MOSTLY_IQ3_M         = 27, // except 1d tensors
        LLAMA_FTYPE_MOSTLY_IQ2_S         = 28, // except 1d tensors
        LLAMA_FTYPE_MOSTLY_IQ2_M         = 29, // except 1d tensors
        LLAMA_FTYPE_MOSTLY_IQ4_XS        = 30, // except 1d tensors
        LLAMA_FTYPE_MOSTLY_IQ1_M         = 31, // except 1d tensors
        LLAMA_FTYPE_MOSTLY_BF16          = 32, // except 1d tensors
        LLAMA_FTYPE_MOSTLY_Q4_0_4_4      = 33, // except 1d tensors
        LLAMA_FTYPE_MOSTLY_Q4_0_4_8      = 34, // except 1d tensors
        LLAMA_FTYPE_MOSTLY_Q4_0_8_8      = 35, // except 1d tensors
        LLAMA_FTYPE_MOSTLY_TQ1_0         = 36, // except 1d tensors
        LLAMA_FTYPE_MOSTLY_TQ2_0         = 37, // except 1d tensors

        LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
    };

    enum llama_rope_scaling_type {
        LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
        LLAMA_ROPE_SCALING_TYPE_NONE        = 0,
        LLAMA_ROPE_SCALING_TYPE_LINEAR      = 1,
        LLAMA_ROPE_SCALING_TYPE_YARN        = 2,
        LLAMA_ROPE_SCALING_TYPE_MAX_VALUE   = LLAMA_ROPE_SCALING_TYPE_YARN,
    };

    enum llama_pooling_type {
        LLAMA_POOLING_TYPE_UNSPECIFIED = -1,
        LLAMA_POOLING_TYPE_NONE = 0,
        LLAMA_POOLING_TYPE_MEAN = 1,
        LLAMA_POOLING_TYPE_CLS  = 2,
        LLAMA_POOLING_TYPE_LAST = 3,
        LLAMA_POOLING_TYPE_RANK = 4, // used by reranking models to attach the classification head to the graph
    };

    enum llama_attention_type {
        LLAMA_ATTENTION_TYPE_UNSPECIFIED = -1,
        LLAMA_ATTENTION_TYPE_CAUSAL      = 0,
        LLAMA_ATTENTION_TYPE_NON_CAUSAL  = 1,
    };

    enum llama_split_mode {
        LLAMA_SPLIT_MODE_NONE  = 0, // single GPU
        LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
        LLAMA_SPLIT_MODE_ROW   = 2, // split layers and KV across GPUs, use tensor parallelism if supported
    };

    // TODO: simplify (https://github.com/ggerganov/llama.cpp/pull/9294#pullrequestreview-2286561979)
    typedef struct llama_token_data {
        llama_token id; // token id
        float logit;    // log-odds of the token
        float p;        // probability of the token
    } llama_token_data;

    typedef struct llama_token_data_array {
        // TODO: consider SoA
        // NOTE: this pointer can be modified by the samplers
        llama_token_data * data;
        size_t size;
        int64_t selected; // this is the index in the data array (i.e. not the token id)
        bool sorted;
    } llama_token_data_array;

    typedef bool (*llama_progress_callback)(float progress, void * user_data);

    // Input data for llama_decode
    // A llama_batch object can contain input about one or many sequences
    // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
    //
    // - token  : the token ids of the input (used when embd is NULL)
    // - embd   : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
    // - pos    : the positions of the respective token in the sequence
    //            (if set to NULL, the token position will be tracked automatically by llama_decode)
    // - seq_id : the sequence to which the respective token belongs
    //            (if set to NULL, the sequence ID will be assumed to be 0)
    // - logits : if zero, the logits (and/or the embeddings) for the respective token will not be output
    //            (if set to NULL, only the logits for last token will be returned)
    //
    typedef struct llama_batch {
        int32_t n_tokens;

        llama_token  *  token;
        float        *  embd;
        llama_pos    *  pos;
        int32_t      *  n_seq_id;
        llama_seq_id ** seq_id;
        int8_t       *  logits; // TODO: rename this to "output"
    } llama_batch;

    enum llama_model_kv_override_type {
        LLAMA_KV_OVERRIDE_TYPE_INT,
        LLAMA_KV_OVERRIDE_TYPE_FLOAT,
        LLAMA_KV_OVERRIDE_TYPE_BOOL,
        LLAMA_KV_OVERRIDE_TYPE_STR,
    };

    struct llama_model_kv_override {
        enum llama_model_kv_override_type tag;

        char key[128];

        union {
            int64_t val_i64;
            double  val_f64;
            bool    val_bool;
            char    val_str[128];
        };
    };

    struct llama_model_params {
        int32_t n_gpu_layers; // number of layers to store in VRAM
        enum llama_split_mode split_mode; // how to split the model across multiple GPUs

        // the GPU that is used for the entire model when split_mode is LLAMA_SPLIT_MODE_NONE
        int32_t main_gpu;

        // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
        const float * tensor_split;

        // comma separated list of RPC servers to use for offloading
        const char * rpc_servers;

        // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
        // If the provided progress_callback returns true, model loading continues.
        // If it returns false, model loading is immediately aborted.
        llama_progress_callback progress_callback;

        // context pointer passed to the progress callback
        void * progress_callback_user_data;

        // override key-value pairs of the model meta data
        const struct llama_model_kv_override * kv_overrides;

        // Keep the booleans together to avoid misalignment during copy-by-value.
        bool vocab_only;    // only load the vocabulary, no weights
        bool use_mmap;      // use mmap if possible
        bool use_mlock;     // force system to keep model in RAM
        bool check_tensors; // validate model tensor data
    };

    // NOTE: changing the default values of parameters marked as [EXPERIMENTAL] may cause crashes or incorrect results in certain configurations
    //       https://github.com/ggerganov/llama.cpp/pull/7544
    struct llama_context_params {
        uint32_t n_ctx;             // text context, 0 = from model
        uint32_t n_batch;           // logical maximum batch size that can be submitted to llama_decode
        uint32_t n_ubatch;          // physical maximum batch size
        uint32_t n_seq_max;         // max number of sequences (i.e. distinct states for recurrent models)
        int32_t  n_threads;         // number of threads to use for generation
        int32_t  n_threads_batch;   // number of threads to use for batch processing

        enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
        enum llama_pooling_type      pooling_type;      // whether to pool (sum) embedding results by sequence id
        enum llama_attention_type    attention_type;    // attention type to use for embeddings

        // ref: https://github.com/ggerganov/llama.cpp/pull/2054
        float    rope_freq_base;   // RoPE base frequency, 0 = from model
        float    rope_freq_scale;  // RoPE frequency scaling factor, 0 = from model
        float    yarn_ext_factor;  // YaRN extrapolation mix factor, negative = from model
        float    yarn_attn_factor; // YaRN magnitude scaling factor
        float    yarn_beta_fast;   // YaRN low correction dim
        float    yarn_beta_slow;   // YaRN high correction dim
        uint32_t yarn_orig_ctx;    // YaRN original context size
        float    defrag_thold;     // defragment the KV cache if holes/size > thold, < 0 disabled (default)

        ggml_backend_sched_eval_callback cb_eval;
        void * cb_eval_user_data;

        enum ggml_type type_k; // data type for K cache [EXPERIMENTAL]
        enum ggml_type type_v; // data type for V cache [EXPERIMENTAL]

        // Keep the booleans together and at the end of the struct to avoid misalignment during copy-by-value.
        // TODO: move at the end of the struct
        bool logits_all;  // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
        bool embeddings;  // if true, extract embeddings (together with logits)
        bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
        bool flash_attn;  // whether to use flash attention [EXPERIMENTAL]
        bool no_perf;     // whether to measure performance timings

        // Abort callback
        // if it returns true, execution of llama_decode() will be aborted
        // currently works only with CPU execution
        ggml_abort_callback abort_callback;
        void *              abort_callback_data;
    };

    // model quantization parameters
    typedef struct llama_model_quantize_params {
        int32_t nthread;                     // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
        enum llama_ftype ftype;              // quantize to this llama_ftype
        enum ggml_type output_tensor_type;   // output tensor type
        enum ggml_type token_embedding_type; // token embeddings tensor type
        bool allow_requantize;               // allow quantizing non-f32/f16 tensors
        bool quantize_output_tensor;         // quantize output.weight
        bool only_copy;                      // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
        bool pure;                           // quantize all tensors to the default type
        bool keep_split;                     // quantize to the same number of shards
        void * imatrix;                      // pointer to importance matrix data
        void * kv_overrides;                 // pointer to vector containing overrides
    } llama_model_quantize_params;

    typedef struct llama_logit_bias {
        llama_token token;
        float bias;
    } llama_logit_bias;

    typedef struct llama_sampler_chain_params {
        bool no_perf; // whether to measure performance timings
    } llama_sampler_chain_params;

    // used in chat template
    typedef struct llama_chat_message {
        const char * role;
        const char * content;
    } llama_chat_message;

    // lora adapter
    struct llama_lora_adapter;

    // Helpers for getting default parameters
    // TODO: update API to start accepting pointers to params structs (https://github.com/ggerganov/llama.cpp/discussions/9172)
    LLAMA_API struct llama_model_params          llama_model_default_params(void);
    LLAMA_API struct llama_context_params        llama_context_default_params(void);
    LLAMA_API struct llama_sampler_chain_params  llama_sampler_chain_default_params(void);
    LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);

    // Initialize the llama + ggml backend
    // If numa is true, use NUMA optimizations
    // Call once at the start of the program
    LLAMA_API void llama_backend_init(void);

    //optional:
    LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);

    // Optional: an auto threadpool gets created in ggml if not passed explicitly
    LLAMA_API void llama_attach_threadpool(
               struct   llama_context * ctx,
            ggml_threadpool_t   threadpool,
            ggml_threadpool_t   threadpool_batch);
    LLAMA_API void llama_detach_threadpool(struct llama_context * ctx);

    // Call once at the end of the program - currently only used for MPI
    LLAMA_API void llama_backend_free(void);

    LLAMA_API struct llama_model * llama_load_model_from_file(
                             const char * path_model,
              struct llama_model_params   params);

    LLAMA_API void llama_free_model(struct llama_model * model);

    // TODO: rename to llama_init_from_model
    LLAMA_API struct llama_context * llama_new_context_with_model(
                     struct llama_model * model,
            struct llama_context_params   params);

    // Frees all allocated memory
    LLAMA_API void llama_free(struct llama_context * ctx);

    LLAMA_API int64_t llama_time_us(void);

    LLAMA_API size_t llama_max_devices(void);

    LLAMA_API bool llama_supports_mmap       (void);
    LLAMA_API bool llama_supports_mlock      (void);
    LLAMA_API bool llama_supports_gpu_offload(void);
    LLAMA_API bool llama_supports_rpc        (void);

    LLAMA_API uint32_t llama_n_ctx      (const struct llama_context * ctx);
    LLAMA_API uint32_t llama_n_batch    (const struct llama_context * ctx);
    LLAMA_API uint32_t llama_n_ubatch   (const struct llama_context * ctx);
    LLAMA_API uint32_t llama_n_seq_max  (const struct llama_context * ctx);

    LLAMA_API int32_t llama_n_vocab    (const struct llama_model * model);
    LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
    LLAMA_API int32_t llama_n_embd     (const struct llama_model * model);
    LLAMA_API int32_t llama_n_layer    (const struct llama_model * model);
    LLAMA_API int32_t llama_n_head     (const struct llama_model * model);

    LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);

    LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
    LLAMA_API enum llama_vocab_type   llama_vocab_type  (const struct llama_model * model);
    LLAMA_API enum llama_rope_type    llama_rope_type   (const struct llama_model * model);

    // Get the model's RoPE frequency scaling factor
    LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);

    // Functions to access the model's GGUF metadata scalar values
    // - The functions return the length of the string on success, or -1 on failure
    // - The output string is always null-terminated and cleared on failure
    // - GGUF array values are not supported by these functions

    // Get metadata value as a string by key name
    LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);

    // Get the number of metadata key/value pairs
    LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);

    // Get metadata key name by index
    LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);

    // Get metadata value as a string by index
    LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);

    // Get a string describing the model type
    LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);

    // Returns the total size of all the tensors in the model in bytes
    LLAMA_API uint64_t llama_model_size(const struct llama_model * model);

    // Returns the total number of parameters in the model
    LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);

    // Get a llama model tensor
    LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);

    // Returns true if the model contains an encoder that requires llama_encode() call
    LLAMA_API bool llama_model_has_encoder(const struct llama_model * model);

    // Returns true if the model contains a decoder that requires llama_decode() call
    LLAMA_API bool llama_model_has_decoder(const struct llama_model * model);

    // For encoder-decoder models, this function returns id of the token that must be provided
    // to the decoder to start generating output sequence. For other models, it returns -1.
    LLAMA_API llama_token llama_model_decoder_start_token(const struct llama_model * model);

    // Returns true if the model is recurrent (like Mamba, RWKV, etc.)
    LLAMA_API bool llama_model_is_recurrent(const struct llama_model * model);

    // Returns 0 on success
    LLAMA_API uint32_t llama_model_quantize(
            const char * fname_inp,
            const char * fname_out,
            const llama_model_quantize_params * params);

    // Load a LoRA adapter from file
    // The loaded adapter will be associated to the given model, and will be free when the model is deleted
    LLAMA_API struct llama_lora_adapter * llama_lora_adapter_init(
            struct llama_model * model,
            const char * path_lora);

    // Add a loaded LoRA adapter to given context
    // This will not modify model's weight
    LLAMA_API int32_t llama_lora_adapter_set(
            struct llama_context * ctx,
            struct llama_lora_adapter * adapter,
            float scale);

    // Remove a specific LoRA adapter from given context
    // Return -1 if the adapter is not present in the context
    LLAMA_API int32_t llama_lora_adapter_remove(
            struct llama_context * ctx,
            struct llama_lora_adapter * adapter);

    // Remove all LoRA adapters from given context
    LLAMA_API void llama_lora_adapter_clear(
            struct llama_context * ctx);

    // Manually free a LoRA adapter
    // Note: loaded adapters will be free when the associated model is deleted
    LLAMA_API void llama_lora_adapter_free(struct llama_lora_adapter * adapter);

    // Apply a loaded control vector to a llama_context, or if data is NULL, clear
    // the currently loaded vector.
    // n_embd should be the size of a single layer's control, and data should point
    // to an n_embd x n_layers buffer starting from layer 1.
    // il_start and il_end are the layer range the vector should apply to (both inclusive)
    // See llama_control_vector_load in common to load a control vector.
    LLAMA_API int32_t llama_control_vector_apply(
            struct llama_context * lctx,
                     const float * data,
                          size_t   len,
                         int32_t   n_embd,
                         int32_t   il_start,
                         int32_t   il_end);

    //
    // KV cache
    //

    // Information associated with an individual cell in the KV cache view.
    struct llama_kv_cache_view_cell {
        // The position for this cell. Takes KV cache shifts into account.
        // May be negative if the cell is not populated.
        llama_pos pos;
    };

    // An updateable view of the KV cache.
    struct llama_kv_cache_view {
        // Number of KV cache cells. This will be the same as the context size.
        int32_t n_cells;

        // Maximum number of sequences that can exist in a cell. It's not an error
        // if there are more sequences in a cell than this value, however they will
        // not be visible in the view cells_sequences.
        int32_t n_seq_max;

        // Number of tokens in the cache. For example, if there are two populated
        // cells, the first with 1 sequence id in it and the second with 2 sequence
        // ids then you'll have 3 tokens.
        int32_t token_count;

        // Number of populated cache cells.
        int32_t used_cells;

        // Maximum contiguous empty slots in the cache.
        int32_t max_contiguous;

        // Index to the start of the max_contiguous slot range. Can be negative
        // when cache is full.
        int32_t max_contiguous_idx;

        // Information for an individual cell.
        struct llama_kv_cache_view_cell * cells;

        // The sequences for each cell. There will be n_seq_max items per cell.
        llama_seq_id * cells_sequences;
    };

    // Create an empty KV cache view. (use only for debugging purposes)
    LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max);

    // Free a KV cache view. (use only for debugging purposes)
    LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);

    // Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
    LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);

    // Returns the number of tokens in the KV cache (slow, use only for debug)
    // If a KV cell has multiple sequences assigned to it, it will be counted multiple times
    LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);

    // Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
    LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);

    // Clear the KV cache - both cell info is erased and KV data is zeroed
    LLAMA_API void llama_kv_cache_clear(
            struct llama_context * ctx);

    // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
    // Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails
    // seq_id < 0 : match any sequence
    // p0 < 0     : [0,  p1]
    // p1 < 0     : [p0, inf)
    LLAMA_API bool llama_kv_cache_seq_rm(
            struct llama_context * ctx,
                    llama_seq_id   seq_id,
                       llama_pos   p0,
                       llama_pos   p1);

    // Copy all tokens that belong to the specified sequence to another sequence
    // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
    // p0 < 0 : [0,  p1]
    // p1 < 0 : [p0, inf)
    LLAMA_API void llama_kv_cache_seq_cp(
            struct llama_context * ctx,
                    llama_seq_id   seq_id_src,
                    llama_seq_id   seq_id_dst,
                       llama_pos   p0,
                       llama_pos   p1);

    // Removes all tokens that do not belong to the specified sequence
    LLAMA_API void llama_kv_cache_seq_keep(
            struct llama_context * ctx,
                    llama_seq_id   seq_id);

    // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
    // If the KV cache is RoPEd, the KV data is updated accordingly:
    //   - lazily on next llama_decode()
    //   - explicitly with llama_kv_cache_update()
    // p0 < 0 : [0,  p1]
    // p1 < 0 : [p0, inf)
    LLAMA_API void llama_kv_cache_seq_add(
            struct llama_context * ctx,
                    llama_seq_id   seq_id,
                       llama_pos   p0,
                       llama_pos   p1,
                       llama_pos   delta);

    // Integer division of the positions by factor of `d > 1`
    // If the KV cache is RoPEd, the KV data is updated accordingly:
    //   - lazily on next llama_decode()
    //   - explicitly with llama_kv_cache_update()
    // p0 < 0 : [0,  p1]
    // p1 < 0 : [p0, inf)
    LLAMA_API void llama_kv_cache_seq_div(
            struct llama_context * ctx,
                    llama_seq_id   seq_id,
                       llama_pos   p0,
                       llama_pos   p1,
                             int   d);

    // Returns the largest position present in the KV cache for the specified sequence
    LLAMA_API llama_pos llama_kv_cache_seq_pos_max(
            struct llama_context * ctx,
                    llama_seq_id   seq_id);

    // Defragment the KV cache
    // This will be applied:
    //   - lazily on next llama_decode()
    //   - explicitly with llama_kv_cache_update()
    LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx);

    // Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
    LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);

    //
    // State / sessions
    //

    // Returns the *actual* size in bytes of the state
    // (logits, embedding and kv_cache)
    // Only use when saving the state, not when restoring it, otherwise the size may be too small.
    LLAMA_API size_t llama_state_get_size(struct llama_context * ctx);
    LLAMA_API DEPRECATED(size_t llama_get_state_size(struct llama_context * ctx),
        "use llama_state_get_size instead");

    // Copies the state to the specified destination address.
    // Destination needs to have allocated enough memory.
    // Returns the number of bytes copied
    LLAMA_API size_t llama_state_get_data(
            struct llama_context * ctx,
                         uint8_t * dst,
                          size_t   size);
    LLAMA_API DEPRECATED(size_t llama_copy_state_data(
            struct llama_context * ctx,
                         uint8_t * dst),
        "use llama_state_get_data instead");

    // Set the state reading from the specified address
    // Returns the number of bytes read
    LLAMA_API size_t llama_state_set_data(
            struct llama_context * ctx,
                   const uint8_t * src,
                          size_t   size);
    LLAMA_API DEPRECATED(size_t llama_set_state_data(
            struct llama_context * ctx,
                   const uint8_t * src),
        "use llama_state_set_data instead");

    // Save/load session file
    LLAMA_API bool llama_state_load_file(
            struct llama_context * ctx,
                      const char * path_session,
                     llama_token * tokens_out,
                          size_t   n_token_capacity,
                          size_t * n_token_count_out);
    LLAMA_API DEPRECATED(bool llama_load_session_file(
            struct llama_context * ctx,
                      const char * path_session,
                     llama_token * tokens_out,
                          size_t   n_token_capacity,
                          size_t * n_token_count_out),
        "use llama_state_load_file instead");

    LLAMA_API bool llama_state_save_file(
            struct llama_context * ctx,
                      const char * path_session,
               const llama_token * tokens,
                          size_t   n_token_count);
    LLAMA_API DEPRECATED(bool llama_save_session_file(
            struct llama_context * ctx,
                      const char * path_session,
               const llama_token * tokens,
                          size_t   n_token_count),
        "use llama_state_save_file instead");

    // Get the exact size needed to copy the KV cache of a single sequence
    LLAMA_API size_t llama_state_seq_get_size(
            struct llama_context * ctx,
                    llama_seq_id   seq_id);

    // Copy the KV cache of a single sequence into the specified buffer
    LLAMA_API size_t llama_state_seq_get_data(
            struct llama_context * ctx,
                         uint8_t * dst,
                          size_t   size,
                    llama_seq_id   seq_id);

    // Copy the sequence data (originally copied with `llama_state_seq_get_data`) into the specified sequence
    // Returns:
    //  - Positive: Ok
    //  - Zero: Failed to load
    LLAMA_API size_t llama_state_seq_set_data(
            struct llama_context * ctx,
                   const uint8_t * src,
                          size_t   size,
                    llama_seq_id   dest_seq_id);

    LLAMA_API size_t llama_state_seq_save_file(
            struct llama_context * ctx,
                      const char * filepath,
                    llama_seq_id   seq_id,
               const llama_token * tokens,
                          size_t   n_token_count);

    LLAMA_API size_t llama_state_seq_load_file(
            struct llama_context * ctx,
                      const char * filepath,
                    llama_seq_id   dest_seq_id,
                     llama_token * tokens_out,
                          size_t   n_token_capacity,
                          size_t * n_token_count_out);

    //
    // Decoding
    //

    // Return batch for single sequence of tokens
    // The sequence ID will be fixed to 0
    // The position of the tokens will be tracked automatically by llama_decode
    //
    // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
    //
    LLAMA_API struct llama_batch llama_batch_get_one(
                  llama_token * tokens,
                      int32_t   n_tokens);

    // Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
    // Each token can be assigned up to n_seq_max sequence ids
    // The batch has to be freed with llama_batch_free()
    // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
    // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
    // The rest of the llama_batch members are allocated with size n_tokens
    // All members are left uninitialized
    LLAMA_API struct llama_batch llama_batch_init(
            int32_t n_tokens,
            int32_t embd,
            int32_t n_seq_max);

    // Frees a batch of tokens allocated with llama_batch_init()
    LLAMA_API void llama_batch_free(struct llama_batch batch);

    // Processes a batch of tokens with the ecoder part of the encoder-decoder model.
    // Stores the encoder output internally for later use by the decoder cross-attention layers.
    //   0 - success
    // < 0 - error
    LLAMA_API int32_t llama_encode(
            struct llama_context * ctx,
              struct llama_batch   batch);

    // Positive return values does not mean a fatal error, but rather a warning.
    //   0 - success
    //   1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
    // < 0 - error
    LLAMA_API int32_t llama_decode(
            struct llama_context * ctx,
              struct llama_batch   batch);

    // Set the number of threads used for decoding
    // n_threads is the number of threads used for generation (single token)
    // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
    LLAMA_API void llama_set_n_threads(struct llama_context * ctx, int32_t n_threads, int32_t n_threads_batch);

    // Get the number of threads used for generation of a single token.
    LLAMA_API int32_t llama_n_threads(struct llama_context * ctx);

    // Get the number of threads used for prompt and batch processing (multiple token).
    LLAMA_API int32_t llama_n_threads_batch(struct llama_context * ctx);

    // Set whether the model is in embeddings mode or not
    // If true, embeddings will be returned but logits will not
    LLAMA_API void llama_set_embeddings(struct llama_context * ctx, bool embeddings);

    // Set whether to use causal attention or not
    // If set to true, the model will only attend to the past tokens
    LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);

    // Set abort callback
    LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data);

    // Wait until all computations are finished
    // This is automatically done when using one of the functions below to obtain the computation results
    // and is not necessary to call it explicitly in most cases
    LLAMA_API void llama_synchronize(struct llama_context * ctx);

    // Token logits obtained from the last call to llama_decode()
    // The logits for which llama_batch.logits[i] != 0 are stored contiguously
    // in the order they have appeared in the batch.
    // Rows: number of tokens for which llama_batch.logits[i] != 0
    // Cols: n_vocab
    LLAMA_API float * llama_get_logits(struct llama_context * ctx);

    // Logits for the ith token. For positive indices, Equivalent to:
    // llama_get_logits(ctx) + ctx->output_ids[i]*n_vocab
    // Negative indicies can be used to access logits in reverse order, -1 is the last logit.
    // returns NULL for invalid ids.
    LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);

    // Get all output token embeddings.
    // when pooling_type == LLAMA_POOLING_TYPE_NONE or when using a generative model,
    // the embeddings for which llama_batch.logits[i] != 0 are stored contiguously
    // in the order they have appeared in the batch.
    // shape: [n_outputs*n_embd]
    // Otherwise, returns NULL.
    LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);

    // Get the embeddings for the ith token. For positive indices, Equivalent to:
    // llama_get_embeddings(ctx) + ctx->output_ids[i]*n_embd
    // Negative indicies can be used to access embeddings in reverse order, -1 is the last embedding.
    // shape: [n_embd] (1-dimensional)
    // returns NULL for invalid ids.
    LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);

    // Get the embeddings for a sequence id
    // Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE
    // when pooling_type == LLAMA_POOLING_TYPE_RANK, returns float[1] with the rank of the sequence
    // otherwise: float[n_embd] (1-dimensional)
    LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id);

    //
    // Vocab
    //

    LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);

    LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);

    LLAMA_API enum llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token);

    // Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)
    LLAMA_API bool llama_token_is_eog(const struct llama_model * model, llama_token token);

    // Identify if Token Id is a control token or a render-able token
    LLAMA_API bool llama_token_is_control(const struct llama_model * model, llama_token token);

    // Special tokens
    LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
    LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
    LLAMA_API llama_token llama_token_eot(const struct llama_model * model); // end-of-turn
    LLAMA_API llama_token llama_token_cls(const struct llama_model * model); // classification
    LLAMA_API llama_token llama_token_sep(const struct llama_model * model); // sentence separator
    LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
    LLAMA_API llama_token llama_token_pad(const struct llama_model * model); // padding

    LLAMA_API bool llama_add_bos_token(const struct llama_model * model);
    LLAMA_API bool llama_add_eos_token(const struct llama_model * model);

    // infill tokens
    DEPRECATED(LLAMA_API llama_token llama_token_prefix(const struct llama_model * model), "use llama_token_fim_pre instead");
    DEPRECATED(LLAMA_API llama_token llama_token_middle(const struct llama_model * model), "use llama_token_fim_mid instead");
    DEPRECATED(LLAMA_API llama_token llama_token_suffix(const struct llama_model * model), "use llama_token_fim_suf instead");

    LLAMA_API llama_token llama_token_fim_pre(const struct llama_model * model);
    LLAMA_API llama_token llama_token_fim_suf(const struct llama_model * model);
    LLAMA_API llama_token llama_token_fim_mid(const struct llama_model * model);
    LLAMA_API llama_token llama_token_fim_pad(const struct llama_model * model);
    LLAMA_API llama_token llama_token_fim_rep(const struct llama_model * model);
    LLAMA_API llama_token llama_token_fim_sep(const struct llama_model * model);

    //
    // Tokenization
    //
    // The API is thread-safe.
    //

    /// @details Convert the provided text into tokens.
    /// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
    /// @return Returns the number of tokens on success, no more than n_tokens_max
    /// @return Returns a negative number on failure - the number of tokens that would have been returned
    /// @param add_special Allow to add BOS and EOS tokens if model is configured to do so.
    /// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated
    ///                      as plaintext. Does not insert a leading space.
    LLAMA_API int32_t llama_tokenize(
        const struct llama_model * model,
                      const char * text,
                         int32_t   text_len,
                     llama_token * tokens,
                         int32_t   n_tokens_max,
                            bool   add_special,
                            bool   parse_special);

    // Token Id -> Piece.
    // Uses the vocabulary in the provided context.
    // Does not write null terminator to the buffer.
    // User can skip up to 'lstrip' leading spaces before copying (useful when encoding/decoding multiple tokens with 'add_space_prefix')
    // @param special If true, special tokens are rendered in the output.
    LLAMA_API int32_t llama_token_to_piece(
              const struct llama_model * model,
                           llama_token   token,
                                  char * buf,
                               int32_t   length,
                               int32_t   lstrip,
                                  bool   special);

    /// @details Convert the provided tokens into text (inverse of llama_tokenize()).
    /// @param text The char pointer must be large enough to hold the resulting text.
    /// @return Returns the number of chars/bytes on success, no more than text_len_max.
    /// @return Returns a negative number on failure - the number of chars/bytes that would have been returned.
    /// @param remove_special Allow to remove BOS and EOS tokens if model is configured to do so.
    /// @param unparse_special If true, special tokens are rendered in the output.
    LLAMA_API int32_t llama_detokenize(
        const struct llama_model * model,
               const llama_token * tokens,
                         int32_t   n_tokens,
                            char * text,
                         int32_t   text_len_max,
                            bool   remove_special,
                            bool   unparse_special);

    //
    // Chat templates
    //

    /// Apply chat template. Inspired by hf apply_chat_template() on python.
    /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
    /// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
    /// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead.
    /// @param chat Pointer to a list of multiple llama_chat_message
    /// @param n_msg Number of llama_chat_message in this chat
    /// @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message.
    /// @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages)
    /// @param length The size of the allocated buffer
    /// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
    LLAMA_API int32_t llama_chat_apply_template(
              const struct llama_model * model,
                            const char * tmpl,
       const struct llama_chat_message * chat,
                                size_t   n_msg,
                                  bool   add_ass,
                                  char * buf,
                               int32_t   length);

    //
    // Sampling API
    //
    // Sample usage:
    //
    //    // prepare the sampling chain at the start
    //    auto sparams = llama_sampler_chain_default_params();
    //
    //    llama_sampler * smpl = llama_sampler_chain_init(sparams);
    //
    //    llama_sampler_chain_add(smpl, llama_sampler_init_top_k(50));
    //    llama_sampler_chain_add(smpl, llama_sampler_init_top_p(0.9, 1));
    //    llama_sampler_chain_add(smpl, llama_sampler_init_temp (0.8));
    //
    //    // typically, the chain should end with a sampler such as "greedy", "dist" or "mirostat"
    //    // this sampler will be responsible to select the actual token
    //    llama_sampler_chain_add(smpl, llama_sampler_init_dist(seed));
    //
    //    ...
    //
    //    // decoding loop:
    //    while (...) {
    //        ...
    //
    //        llama_decode(ctx, batch);
    //
    //        // sample from the logits of the last token in the batch
    //        const llama_token id = llama_sampler_sample(smpl, ctx, -1);
    //
    //        // accepting the token updates the internal state of certain samplers (e.g. grammar, repetition, etc.)
    //        llama_sampler_accept(smpl, id);
    //        ...
    //    }
    //
    //    llama_sampler_free(smpl);
    //
    // TODO: In the future, llama_sampler will be utilized to offload the sampling to the backends (e.g. GPU).
    // TODO: in the future, the entire sampling API that uses llama_model should start using llama_vocab
    //

    typedef void * llama_sampler_context_t;

    // user code can implement the interface below in order to create custom llama_sampler
    struct llama_sampler_i {
        const char *           (*name)  (const struct llama_sampler * smpl);                                 // can be NULL
        void                   (*accept)(      struct llama_sampler * smpl, llama_token token);              // can be NULL
        void                   (*apply) (      struct llama_sampler * smpl, llama_token_data_array * cur_p); // required
        void                   (*reset) (      struct llama_sampler * smpl);                                 // can be NULL
        struct llama_sampler * (*clone) (const struct llama_sampler * smpl);                                 // can be NULL if ctx is NULL
        void                   (*free)  (      struct llama_sampler * smpl);                                 // can be NULL if ctx is NULL

        // TODO: API for internal libllama usage for appending the sampling to an existing ggml_cgraph
        //void (*apply_ggml) (struct llama_sampler * smpl, ...);
    };

    struct llama_sampler {
        struct llama_sampler_i  * iface;
        llama_sampler_context_t   ctx;
    };

    // mirror of llama_sampler_i:
    LLAMA_API const char *           llama_sampler_name  (const struct llama_sampler * smpl);
    LLAMA_API void                   llama_sampler_accept(      struct llama_sampler * smpl, llama_token token);
    LLAMA_API void                   llama_sampler_apply (      struct llama_sampler * smpl, llama_token_data_array * cur_p);
    LLAMA_API void                   llama_sampler_reset (      struct llama_sampler * smpl);
    LLAMA_API struct llama_sampler * llama_sampler_clone (const struct llama_sampler * smpl);
    // important: do not free if the sampler has been added to a llama_sampler_chain (via llama_sampler_chain_add)
    LLAMA_API void                   llama_sampler_free  (      struct llama_sampler * smpl);

    // llama_sampler_chain
    // a type of llama_sampler that can chain multiple samplers one after another

    LLAMA_API struct llama_sampler * llama_sampler_chain_init(struct llama_sampler_chain_params params);

    // important: takes ownership of the sampler object and will free it when llama_sampler_free is called
    LLAMA_API void                   llama_sampler_chain_add(      struct llama_sampler * chain, struct llama_sampler * smpl);
    LLAMA_API struct llama_sampler * llama_sampler_chain_get(const struct llama_sampler * chain, int32_t i);
    LLAMA_API int                    llama_sampler_chain_n  (const struct llama_sampler * chain);

    // after removing a sampler, the chain will no longer own it, and it will not be freed when the chain is freed
    LLAMA_API struct llama_sampler * llama_sampler_chain_remove(   struct llama_sampler * chain, int32_t i);

    // available samplers:

    LLAMA_API struct llama_sampler * llama_sampler_init_greedy(void);
    LLAMA_API struct llama_sampler * llama_sampler_init_dist  (uint32_t seed);

    /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
    /// NOTE: Avoid using on the full vocabulary as the sorting can become slow. For example, apply top-k or top-p sampling first.
    DEPRECATED(LLAMA_API struct llama_sampler * llama_sampler_init_softmax    (void),
        "will be removed in the future (see https://github.com/ggerganov/llama.cpp/pull/9896#discussion_r1800920915)");

    /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
    LLAMA_API struct llama_sampler * llama_sampler_init_top_k      (int32_t k);

    /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
    LLAMA_API struct llama_sampler * llama_sampler_init_top_p      (float   p, size_t min_keep);

    /// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
    LLAMA_API struct llama_sampler * llama_sampler_init_min_p      (float   p, size_t min_keep);

    /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
    LLAMA_API struct llama_sampler * llama_sampler_init_typical    (float   p, size_t min_keep);

    /// #details Updates the logits l_i` = l_i/t. When t <= 0.0f, the maximum logit is kept at it's original value, the rest are set to -inf
    LLAMA_API struct llama_sampler * llama_sampler_init_temp       (float   t);

    /// @details Dynamic temperature implementation (a.k.a. entropy) described in the paper https://arxiv.org/abs/2309.02772.
    LLAMA_API struct llama_sampler * llama_sampler_init_temp_ext   (float   t, float   delta, float exponent);

    /// @details XTC sampler as described in https://github.com/oobabooga/text-generation-webui/pull/6335
    LLAMA_API struct llama_sampler * llama_sampler_init_xtc        (float   p, float   t,     size_t min_keep, uint32_t seed);

    /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
    /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
    /// @param tau  The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
    /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
    /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
    /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
    LLAMA_API struct llama_sampler * llama_sampler_init_mirostat(
                             int32_t   n_vocab,
                            uint32_t   seed,
                               float   tau,
                               float   eta,
                             int32_t   m);

    /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
    /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
    /// @param tau  The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
    /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
    /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
    LLAMA_API struct llama_sampler * llama_sampler_init_mirostat_v2(
                            uint32_t   seed,
                               float   tau,
                               float   eta);

    LLAMA_API struct llama_sampler * llama_sampler_init_grammar(
            const struct llama_model * model,
                          const char * grammar_str,
                          const char * grammar_root);

    LLAMA_API struct llama_sampler * llama_sampler_init_penalties(
                             int32_t   n_vocab,         // llama_n_vocab()
                         llama_token   special_eos_id,  // llama_token_eos()
                         llama_token   linefeed_id,     // llama_token_nl()
                             int32_t   penalty_last_n,  // last n tokens to penalize (0 = disable penalty, -1 = context size)
                               float   penalty_repeat,  // 1.0 = disabled
                               float   penalty_freq,    // 0.0 = disabled
                               float   penalty_present, // 0.0 = disabled
                                bool   penalize_nl,     // consider newlines as a repeatable token
                                bool   ignore_eos);     // ignore the end-of-sequence token

    ///  @details DRY sampler, designed by p-e-w, as described in: https://github.com/oobabooga/text-generation-webui/pull/5677, porting Koboldcpp implementation authored by pi6am: https://github.com/LostRuins/koboldcpp/pull/982
    LLAMA_API struct llama_sampler *    llama_sampler_init_dry(
            const struct llama_model *  model,
                               float    dry_multiplier,
                               float    dry_base,
                             int32_t    dry_allowed_length,
                             int32_t    dry_penalty_last_n,
                          const char ** seq_breakers,
                              size_t    num_breakers);

    LLAMA_API struct llama_sampler * llama_sampler_init_logit_bias(
                             int32_t   n_vocab,
                             int32_t   n_logit_bias,
              const llama_logit_bias * logit_bias);

    // this sampler is meant to be used for fill-in-the-middle infilling
    // it's supposed to be used after top_k + top_p sampling
    //
    // 1. if the sum of the EOG probs times the number of candidates is higher than the sum of the other probs -> pick EOG
    // 2. combine probs of tokens that have the same prefix
    //
    // example:
    //
    // - before:
    //   "hel":   0.5
    //   "hell":  0.2
    //   "hello": 0.1
    //   "dummy": 0.1
    //
    // - after:
    //   "hel":   0.8
    //   "dummy": 0.1
    //
    // 3. discard non-EOG tokens with low prob
    // 4. if no tokens are left -> pick EOT
    //
    LLAMA_API struct llama_sampler * llama_sampler_init_infill(const struct llama_model * model);

    // Returns the seed used by the sampler if applicable, LLAMA_DEFAULT_SEED otherwise
    LLAMA_API uint32_t llama_sampler_get_seed(const struct llama_sampler * smpl);

    /// @details Sample and accept a token from the idx-th output of the last evaluation
    //
    // Shorthand for:
    //    const auto * logits = llama_get_logits_ith(ctx, idx);
    //    llama_token_data_array cur_p = { ... init from logits ... };
    //    llama_sampler_apply(smpl, &cur_p);
    //    auto token = cur_p.data[cur_p.selected].id;
    //    llama_sampler_accept(smpl, token);
    //    return token;
    // Returns the sampled token
    LLAMA_API llama_token llama_sampler_sample(struct llama_sampler * smpl, struct llama_context * ctx, int32_t idx);

    // TODO: extend in the future
    //LLAMA_API void llama_decode_with_sampler(struct llama_context * ctx, struct llama_sampler * smpl, struct llama_batch batch, ...);

    //
    // Model split
    //

    /// @details Build a split GGUF final path for this chunk.
    ///          llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf"
    //  Returns the split_path length.
    LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count);

    /// @details Extract the path prefix from the split_path if and only if the split_no and split_count match.
    ///          llama_split_prefix(split_prefix, 64, "/models/ggml-model-q4_0-00002-of-00004.gguf", 2, 4) => split_prefix = "/models/ggml-model-q4_0"
    //  Returns the split_prefix length.
    LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count);

    // Print system information
    LLAMA_API const char * llama_print_system_info(void);

    // Set callback for all future logging events.
    // If this is not called, or NULL is supplied, everything is output on stderr.
    LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);

    //
    // Performance utils
    //
    // NOTE: Used by llama.cpp examples, avoid using in third-party apps. Instead, do your own performance measurements.
    //

    struct llama_perf_context_data {
        double t_start_ms;
        double t_load_ms;
        double t_p_eval_ms;
        double t_eval_ms;

        int32_t n_p_eval;
        int32_t n_eval;
    };

    struct llama_perf_sampler_data {
        double t_sample_ms;

        int32_t n_sample;
    };

    LLAMA_API struct llama_perf_context_data llama_perf_context      (const struct llama_context * ctx);
    LLAMA_API void                           llama_perf_context_print(const struct llama_context * ctx);
    LLAMA_API void                           llama_perf_context_reset(      struct llama_context * ctx);

    // NOTE: the following work only with samplers constructed via llama_sampler_chain_init
    LLAMA_API struct llama_perf_sampler_data llama_perf_sampler      (const struct llama_sampler * chain);
    LLAMA_API void                           llama_perf_sampler_print(const struct llama_sampler * chain);
    LLAMA_API void                           llama_perf_sampler_reset(      struct llama_sampler * chain);

    LLAMA_API void llama_perf_dump_yaml(FILE * stream, const struct llama_context * ctx);

#ifdef __cplusplus
}
#endif

#endif // LLAMA_H