Spaces:
Runtime error
Runtime error
File size: 61,429 Bytes
57e3690 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import asyncio
import json
import os
import re
import socket
import subprocess
import sys
import threading
import time
import requests
from collections.abc import Sequence
from contextlib import closing
from re import RegexFlag
from typing import Any, Literal, cast
import aiohttp
import numpy as np
import openai
from openai.types.chat import ChatCompletionChunk
from behave import step # pyright: ignore[reportAttributeAccessIssue]
from behave.api.async_step import async_run_until_complete
from prometheus_client import parser
# pyright: reportRedeclaration=false
DEFAULT_TIMEOUT_SECONDS = aiohttp.ClientTimeout(total=600)
@step("a server listening on {server_fqdn}:{server_port}")
def step_server_config(context, server_fqdn: str, server_port: str):
context.server_fqdn = server_fqdn
context.server_port = int(server_port)
context.n_threads = None
context.n_gpu_layer = None
if 'PORT' in os.environ:
context.server_port = int(os.environ['PORT'])
print(f"$PORT set, overriding server port with to {context.server_port}")
if 'FQDN' in os.environ:
context.server_fqdn = os.environ['FQDN']
print(f"$FQDN set, overriding server fqdn with to {context.server_fqdn}")
if 'N_GPU_LAYERS' in os.environ:
context.n_gpu_layer = int(os.environ['N_GPU_LAYERS'])
print(f"$N_GPU_LAYERS set, overriding n_gpu_layer with to {context.n_gpu_layer}")
context.base_url = f'http://{context.server_fqdn}:{context.server_port}'
context.model_alias = None
context.model_file = None
context.model_hf_repo = None
context.model_hf_file = None
context.model_url = None
context.n_batch = None
context.n_ubatch = None
context.n_ctx = None
context.n_ga = None
context.n_ga_w = None
context.n_predict = None
context.n_prompts = 0
context.n_server_predict = None
context.slot_save_path = None
context.id_slot = None
context.cache_prompt = None
context.n_slots = None
context.prompt_prefix = None
context.prompt_suffix = None
context.server_api_key = None
context.server_continuous_batching = False
context.server_embeddings = False
context.server_reranking = False
context.server_metrics = False
context.server_process = None
context.seed = None
context.draft = None
context.server_seed = None
context.user_api_key = None
context.response_format = None
context.temperature = None
context.lora_file = None
context.disable_ctx_shift = False
# infill
context.infill_input_extra = None
context.infill_input_suffix = ''
context.infill_input_prefix = ''
context.tasks_result = []
context.concurrent_tasks = []
context.prompts = []
context.reranking_query = None
context.reranking_documents = []
context.reranking_results = None
@step('a model file {hf_file} from HF repo {hf_repo}')
def step_download_hf_model(context, hf_file: str, hf_repo: str):
context.model_hf_repo = hf_repo
context.model_hf_file = hf_file
context.model_file = os.path.basename(hf_file)
@step('a lora adapter file from {lora_file_url}')
def step_download_lora_file(context, lora_file_url: str):
file_name = lora_file_url.split('/').pop()
context.lora_file = f'../../../{file_name}'
with open(context.lora_file, 'wb') as f:
f.write(requests.get(lora_file_url).content)
@step('a model file {model_file}')
def step_model_file(context, model_file: str):
context.model_file = model_file
@step('a model url {model_url}')
def step_model_url(context, model_url: str):
context.model_url = model_url
@step('a model alias {model_alias}')
def step_model_alias(context, model_alias: str):
context.model_alias = model_alias
@step('{seed:d} as server seed')
def step_seed(context, seed: int):
context.server_seed = seed
@step('{ngl:d} GPU offloaded layers')
def step_n_gpu_layer(context, ngl: int):
if 'N_GPU_LAYERS' in os.environ:
new_ngl = int(os.environ['N_GPU_LAYERS'])
if context.debug:
print(f"-ngl upgraded from {ngl} to {new_ngl}")
ngl = new_ngl
context.n_gpu_layer = ngl
@step('{n_threads:d} threads')
def step_n_threads(context, n_threads: int):
context.n_thread = n_threads
@step('{draft:d} as draft')
def step_draft(context, draft: int):
context.draft = draft
@step('{n_ctx:d} KV cache size')
def step_n_ctx(context, n_ctx: int):
context.n_ctx = n_ctx
@step('{n_slots:d} slots')
def step_n_slots(context, n_slots: int):
context.n_slots = n_slots
@step('{n_predict:d} server max tokens to predict')
def step_server_n_predict(context, n_predict: int):
context.n_server_predict = n_predict if n_predict > 0 else None
@step('{slot_save_path} as slot save path')
def step_slot_save_path(context, slot_save_path: str):
context.slot_save_path = slot_save_path
@step('using slot id {id_slot:d}')
def step_id_slot(context, id_slot: int):
context.id_slot = id_slot
@step('prompt caching is enabled')
def step_enable_prompt_cache(context):
context.cache_prompt = True
@step('continuous batching')
def step_server_continuous_batching(context):
context.server_continuous_batching = True
@step('enable embeddings endpoint')
def step_server_embeddings(context):
context.server_embeddings = True
@step('enable reranking endpoint')
def step_server_reranking(context):
context.server_reranking = True
@step('prometheus compatible metrics exposed')
def step_server_metrics(context):
context.server_metrics = True
@step('disable context shifting')
def step_server_disable_ctx_shift(context):
context.disable_ctx_shift = True
@step("the server is starting")
def step_start_server(context):
start_server_background(context)
attempts = 0
max_attempts = 20
if 'GITHUB_ACTIONS' in os.environ:
max_attempts *= 2
addrs = socket.getaddrinfo(context.server_fqdn, context.server_port, type=socket.SOCK_STREAM)
family, typ, proto, _, sockaddr = addrs[0]
while True:
with closing(socket.socket(family, typ, proto)) as sock:
result = sock.connect_ex(sockaddr)
if result == 0:
print("\x1b[33;46mserver started!\x1b[0m")
return
attempts += 1
if attempts > max_attempts:
assert False, "server not started"
print(f"waiting for server to start, connect error code = {result}...")
time.sleep(0.1)
async def wait_for_server_status_with_timeout(context, expecting_status: Literal['healthy', 'ready', 'idle', 'busy'] | str, timeout: int):
match expecting_status:
case 'healthy':
await wait_for_slots_status(context, context.base_url, 200,
timeout=timeout)
case 'ready' | 'idle':
await wait_for_slots_status(context, context.base_url, 200,
timeout=timeout,
params={'fail_on_no_slot': 1},
slots_idle=context.n_slots,
slots_processing=0)
case 'busy':
await wait_for_slots_status(context, context.base_url, 503,
params={'fail_on_no_slot': 1},
slots_idle=0,
slots_processing=context.n_slots)
case _:
assert False, "unknown status"
@step("the server is {expecting_status} with timeout {timeout:d} seconds")
@async_run_until_complete
async def step_wait_for_server_status_with_timeout(context, expecting_status: Literal['healthy', 'ready', 'idle', 'busy'] | str, timeout: int):
await wait_for_server_status_with_timeout(context, expecting_status, timeout)
@step("the server is {expecting_status}")
@async_run_until_complete
async def step_wait_for_server_status(context, expecting_status: Literal['healthy', 'ready', 'idle', 'busy'] | str):
await wait_for_server_status_with_timeout(context, expecting_status, 30)
@step('all slots are {expected_slot_status_string}')
@async_run_until_complete
async def step_all_slots_status(context, expected_slot_status_string: Literal['idle', 'busy'] | str):
match expected_slot_status_string:
case 'idle':
expected_slot_status = False
case 'busy':
expected_slot_status = True
case _:
assert False, "unknown status"
expected_slots = [{'id': slot_id, 'is_processing': expected_slot_status}
for slot_id in range(context.n_slots)]
await request_slots_status(context, expected_slots)
@step('a completion request with {api_error} api error')
@async_run_until_complete
async def step_request_completion(context, api_error: Literal['raised'] | str):
expect_api_error = api_error == 'raised' or api_error != 'no'
seeds = await completions_seed(context, num_seeds=1)
completion = await request_completion(context.prompts.pop(),
seeds[0] if seeds is not None else seeds,
context.base_url,
debug=context.debug,
n_predict=context.n_predict,
cache_prompt=context.cache_prompt,
id_slot=context.id_slot,
expect_api_error=expect_api_error,
user_api_key=context.user_api_key,
temperature=context.temperature)
context.tasks_result.append(completion)
if context.debug:
print(f"Completion response: {completion}")
if api_error == 'raised':
assert completion == 401, f"completion must be an 401 status code: {completion}"
elif api_error.isdigit():
api_error_code = int(api_error)
assert completion == api_error_code, f"completion must be an {api_error_code} status code: {completion}"
@step('an infill request with {api_error} api error')
@async_run_until_complete
async def step_request_completion(context, api_error: Literal['raised'] | str):
if api_error != 'no':
raise ValueError(f'api_error={api_error} is not yet implemented')
payload = {
"prompt": context.prompts[0],
"input_suffix": context.infill_input_suffix,
"input_prefix": context.infill_input_prefix,
"n_predict": context.n_predict,
"seed": context.seed,
"temperature": context.temperature,
}
if context.infill_input_extra is not None:
payload['input_extra'] = context.infill_input_extra
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
async with session.post(f'{context.base_url}/infill',
json=payload) as response:
assert response.status == 200
context.tasks_result = [await response.json()]
@step('{predicted_n:d} tokens are predicted matching {re_content}')
def step_n_tokens_predicted_with_content(context, predicted_n, re_content):
context.completion = context.tasks_result.pop()
assert_n_tokens_predicted(context.completion, predicted_n, re_content)
@step('{predicted_n:d} tokens are predicted')
def step_n_tokens_predicted(context, predicted_n):
context.completion = context.tasks_result.pop()
assert_n_tokens_predicted(context.completion, predicted_n)
@step('all predictions are equal')
@async_run_until_complete
async def step_predictions_equal(context):
n_completions = await gather_tasks_results(context)
assert n_completions >= 2, "need at least 2 completions"
assert_all_predictions_equal(context.tasks_result)
context.tasks_result = []
@step('all predictions are different')
@async_run_until_complete
async def step_predictions_different(context):
n_completions = await gather_tasks_results(context)
assert n_completions >= 2, "need at least 2 completions"
assert_all_predictions_different(context.tasks_result)
context.tasks_result = []
@step('all token probabilities are equal')
@async_run_until_complete
async def step_token_probabilities_equal(context):
n_completions = await gather_tasks_results(context)
assert n_completions >= 2, "need at least 2 completions"
assert_all_token_probabilities_equal(context.tasks_result)
context.tasks_result = []
@step('the completion is truncated')
def step_assert_completion_truncated(context):
step_assert_completion_truncated(context, '')
@step('the completion is {truncated} truncated')
def step_assert_completion_truncated(context, truncated):
truncated = truncated != "not"
assert context.completion['truncated'] == truncated, f'{context.completion}'
@step('{n_prompt:d} prompt tokens are processed')
def step_impl(context, n_prompt):
assert n_prompt < 0 or n_prompt == context.completion['timings']['prompt_n'], f"n_prompt={context.completion['timings']['prompt_n']}"
@step('a user prompt {user_prompt}')
def step_user_prompt(context, user_prompt):
context.prompts.append(user_prompt)
context.n_prompts = len(context.prompts)
@step('a system prompt {system_prompt}')
def step_system_prompt(context, system_prompt):
context.system_prompt = system_prompt
@step('a model {model}')
def step_model(context, model):
context.model = model
@step('{max_tokens:d} max tokens to predict')
def step_max_tokens(context, max_tokens):
context.n_predict = max_tokens
@step('a response format {response_format}')
def step_response_format(context, response_format):
context.response_format = json.loads(response_format)
@step('{temperature:f} temperature')
def step_temperature(context, temperature):
context.temperature = temperature
@step('streaming is {enable_streaming}')
def step_streaming(context, enable_streaming):
context.enable_streaming = enable_streaming == 'enabled'
@step('a user api key {user_api_key}')
def step_user_api_key(context, user_api_key):
context.user_api_key = user_api_key
@step('no user api key')
def step_no_user_api_key(context):
context.user_api_key = None
@step('a user api key ')
def step_no_user_api_key_space(context):
context.user_api_key = None
@step('a server api key {server_api_key}')
def step_server_api_key(context, server_api_key):
context.server_api_key = server_api_key
@step('{n_junk:d} as number of junk')
def step_n_junk(context, n_junk):
context.n_junk = n_junk
@step('{n_batch:d} as batch size')
def step_n_batch(context, n_batch):
context.n_batch = n_batch
@step('{n_ubatch:d} as ubatch size')
def step_n_ubatch(context, n_ubatch):
context.n_ubatch = n_ubatch
@step('{seed:d} as seed')
def step_seed(context, seed):
if context.seed is None:
context.seed = [seed]
else:
context.seed.append(seed)
@step('BOS token is {bos:d}')
def step_bos_token(context, bos):
context.bos = bos
@step('a prefix prompt')
def step_prompt_prefix(context):
context.prompt_prefix = context_text(context)
@step('a junk suffix prompt')
def step_prompt_junk_suffix(context):
context.prompt_junk_suffix = context_text(context)
@step('a suffix prompt')
def step_prompt_suffix(context):
context.prompt_suffix = context_text(context)
@step('{n_ga:d} group attention factor'
' to extend context size through self-extend')
def step_impl(context, n_ga):
context.n_ga = n_ga
@step('{n_ga_w:d} group attention width to extend context size through self-extend')
def step_impl(context, n_ga_w):
context.n_ga_w = n_ga_w
@step('a passkey prompt template')
def step_prompt_passkey(context):
context.prompt_passkey = context_text(context)
@step('a rerank query')
def step_set_rerank_query(context):
context.reranking_query = context_text(context)
context.reranking_documents = []
@step('a rerank document')
def step_set_rerank_document(context):
context.reranking_documents.append(context_text(context))
@step('{n_prompts:d} fixed prompts')
def step_fixed_prompts(context, n_prompts):
context.prompts.extend([str(0)*(context.n_batch if context.n_batch is not None else 512) for i in range(n_prompts)])
context.n_prompts = n_prompts
@step('a "{passkey}" passkey challenge prompt with the passkey inserted every {i_pos:d} junk')
def step_prompt_passkey(context, passkey, i_pos):
prompt = ""
for i in range(context.n_junk):
if i % context.n_junk == i_pos:
prompt += context.prompt_passkey # the passkey is already substituted
prompt += context.prompt_junk_suffix
if context.debug:
passkey_highlight = "\x1b[33m" + passkey + "\x1b[0m"
print(f"Passkey challenge:\n```{prompt.replace(passkey, passkey_highlight)}```")
context.prompts.append(context.prompt_prefix + prompt + context.prompt_suffix)
context.n_prompts = len(context.prompts)
@step('an OAI compatible chat completions request with {api_error} api error')
@async_run_until_complete
async def step_oai_chat_completions(context, api_error):
if context.debug:
print(f"Submitting OAI compatible completions request...")
expect_api_error = api_error == 'raised'
seeds = await completions_seed(context, num_seeds=1),
completion = await oai_chat_completions(context.prompts.pop(),
seeds[0] if seeds is not None else seeds,
context.system_prompt,
context.base_url,
'/v1/chat',
False,
model=context.model if hasattr(context, 'model') else None,
n_predict=context.n_predict
if hasattr(context, 'n_predict') else None,
enable_streaming=context.enable_streaming
if hasattr(context, 'enable_streaming') else None,
response_format=context.response_format
if hasattr(context, 'response_format') else None,
user_api_key=context.user_api_key
if hasattr(context, 'user_api_key') else None,
expect_api_error=expect_api_error)
context.tasks_result.append(completion)
if context.debug:
print(f"Completion response: {completion}")
if expect_api_error:
assert completion == 401, f"completion must be an 401 status code: {completion}"
if context.debug:
print(f"Completion response: {completion}")
@step('a prompt')
def step_a_prompt(context):
context.prompts.append(context_text(context))
context.n_prompts = len(context.prompts)
@step('a prompt {prompt}')
def step_a_prompt_prompt(context, prompt):
context.prompts.append(prompt)
context.n_prompts = len(context.prompts)
# TODO: allow this to be repeated
@step('an infill input extra {filename} {text}')
def step_infill_input_extra(context, filename, text):
if filename == 'none':
context.infill_input_extra = None
else:
context.infill_input_extra = [{'filename': filename, 'text': text}]
@step('an infill input suffix {text}')
def step_infill_input_suffix(context, text):
context.infill_input_suffix = text
@step('an infill input prefix {text}')
def step_infill_input_prefix(context, text):
context.infill_input_prefix = text
@step('{num_prompts:d} prompts {prompt} with seed {seed:d}')
def step_many_prompts(context, num_prompts, prompt, seed):
if context.seed is None:
context.seed = []
for _ in range(num_prompts):
context.seed.append(seed)
context.prompts.append(prompt)
context.n_prompts = len(context.prompts)
@step('concurrent completion requests')
@async_run_until_complete()
async def step_concurrent_completion_requests(context):
await concurrent_requests(
context,
request_completion,
# prompt is inserted automatically
context.base_url,
debug=context.debug,
prompt_prefix=context.prompt_prefix,
prompt_suffix=context.prompt_suffix,
n_predict=context.n_predict if hasattr(context, 'n_predict') else None,
user_api_key=context.user_api_key if hasattr(context, 'user_api_key') else None,
temperature=context.temperature,
)
@step('concurrent OAI completions requests')
@async_run_until_complete
async def step_oai_chat_completions(context):
await concurrent_requests(context, oai_chat_completions,
# user_prompt is inserted automatically
context.system_prompt,
context.base_url,
'/v1/chat/completions',
True, # async_client
model=context.model
if hasattr(context, 'model') else None,
n_predict=context.n_predict
if hasattr(context, 'n_predict') else None,
enable_streaming=context.enable_streaming
if hasattr(context, 'enable_streaming') else None,
response_format=context.response_format
if hasattr(context, 'response_format') else None,
user_api_key=context.user_api_key
if hasattr(context, 'user_api_key') else None)
@step('concurrent OAI completions requests no v1')
@async_run_until_complete
async def step_oai_chat_completions(context):
await concurrent_requests(context, oai_chat_completions,
# user_prompt is inserted automatically
context.system_prompt,
context.base_url,
'/chat/completions',
True, # async_client
model=context.model
if hasattr(context, 'model') else None,
n_predict=context.n_predict
if hasattr(context, 'n_predict') else None,
enable_streaming=context.enable_streaming
if hasattr(context, 'enable_streaming') else None,
response_format=context.response_format
if hasattr(context, 'response_format') else None,
user_api_key=context.user_api_key
if hasattr(context, 'user_api_key') else None)
@step('all prompts are predicted')
@async_run_until_complete
async def step_all_prompts_are_predicted(context):
await all_prompts_are_predicted(context)
@step('all prompts are predicted with {n_expected_predicted:d} tokens')
@async_run_until_complete
async def step_all_prompts_are_predicted_with_n_tokens(context, n_expected_predicted):
await all_prompts_are_predicted(context, n_expected_predicted)
async def all_prompts_are_predicted(context, expected_predicted_n=None):
n_completions = await gather_tasks_results(context)
assert n_completions > 0
for i in range(n_completions):
assert_n_tokens_predicted(context.tasks_result.pop(), expected_predicted_n=expected_predicted_n)
assert len(context.concurrent_tasks) == 0, f"{len(context.concurrent_tasks)} pending requests"
@step('embeddings are computed for')
@async_run_until_complete
async def step_compute_embedding(context):
context.n_prompts = 1
context.embeddings = await request_embedding(context_text(context), None, base_url=context.base_url)
@step('reranking request')
@async_run_until_complete
async def step_compute_reranking(context):
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
async with session.post(f'{context.base_url}/reranking',
json={
"query": context.reranking_query,
"documents": context.reranking_documents,
}) as response:
if response.status == 200:
response_json = await response.json()
context.reranking_results = response_json['results']
else:
context.reranking_results = response.status
@step('all embeddings are the same')
@async_run_until_complete
async def step_all_embeddings_are_the_same(context):
n_embedding_requests = await gather_tasks_results(context)
assert n_embedding_requests > 0
embeddings = []
for i in range(n_embedding_requests):
embedding = context.tasks_result.pop().pop()
embeddings.append(embedding)
assert_embeddings(embedding)
n = len(embeddings)
for i in range(n-1):
for j in range(i+1, n):
embedding1 = np.array(embeddings[i])
embedding2 = np.array(embeddings[j])
if context.debug:
print(f"embedding1: {embedding1[-8:]}")
print(f"embedding2: {embedding2[-8:]}")
similarity = np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2))
msg = f"Similarity between {i} and {j}: {similarity:.10f}"
if context.debug:
print(f"{msg}")
assert np.isclose(similarity, 1.0, rtol=1e-05, atol=1e-08, equal_nan=False), msg
@step('embeddings are generated')
def step_assert_embeddings(context):
assert context.n_prompts == len(context.embeddings), (f"unexpected response:\n"
f"context.n_prompts={context.n_prompts}\n"
f"context.embeddings={context.embeddings}")
for embedding in context.embeddings:
assert_embeddings(embedding)
@step('embeddings request with {api_error_code:d} api error')
def step_assert_embeddings(context, api_error_code: int):
assert context.embeddings == api_error_code, f"embeddings request must return code {api_error_code}, but got {context.embeddings}"
@step('an OAI compatible embeddings computation request for')
@async_run_until_complete
async def step_oai_compute_embeddings(context):
context.n_prompts = 1
context.embeddings = await request_oai_embeddings(context_text(context), None,
base_url=context.base_url,
user_api_key=context.user_api_key,
model=context.model)
@step('an OAI compatible embeddings computation request for multiple inputs')
@async_run_until_complete
async def step_oai_compute_embeddings_multiple_inputs(context):
context.embeddings = await request_oai_embeddings(context.prompts, None,
base_url=context.base_url,
user_api_key=context.user_api_key,
model=context.model)
context.prompts.clear()
@step('concurrent embedding requests')
@async_run_until_complete()
async def step_concurrent_embedding_requests(context):
await concurrent_requests(context,
request_embedding,
# prompt is inserted automatically
base_url=context.base_url)
@step('concurrent OAI embedding requests')
@async_run_until_complete()
async def step_concurrent_oai_embedding_requests(context):
await concurrent_requests(context,
request_oai_embeddings,
# prompt is inserted automatically
base_url=context.base_url,
async_client=True,
model=context.model)
@step('all embeddings are generated')
@async_run_until_complete()
async def all_embeddings_are_generated(context):
n_embedding_requests = await gather_tasks_results(context)
assert n_embedding_requests == context.n_prompts
for i in range(n_embedding_requests):
assert_embeddings(context.tasks_result.pop().pop())
@step('reranking results are returned')
def reranking_results_are_returned(context):
assert len(context.reranking_results) == len(context.reranking_documents)
@step('reranking highest score is index {idx_high:d} and lowest score is index {idx_low:d}')
def reranking_results_are_returned(context, idx_high: int, idx_low: int):
max_score, max_idx = 0, 0
min_score, min_idx = 0, 0
for res in context.reranking_results:
if max_score < res['relevance_score']:
max_score = res['relevance_score']
max_idx = res['index']
if min_score > res['relevance_score']:
min_score = res['relevance_score']
min_idx = res['index']
print(context.reranking_results)
assert max_idx == idx_high
assert min_idx == idx_low
@step('adding special tokens')
def step_tokenize_set_add_special(context):
context.tokenize_add_special = True
@step("tokenizing with pieces")
@async_run_until_complete
async def step_tokenize_with_pieces(context):
context.tokenized_text = context_text(context)
async with aiohttp.ClientSession() as session:
tokenize_args = {"content": context.tokenized_text, "with_pieces": True}
if getattr(context, "tokenize_add_special", None) is not None:
tokenize_args["add_special"] = context.tokenize_add_special
async with session.post(
f"{context.base_url}/tokenize", json=tokenize_args
) as response:
assert response.status == 200
tokenize_json = await response.json()
context.tokens_with_pieces = tokenize_json["tokens"]
@step("tokens are given with pieces")
@async_run_until_complete
async def step_tokenize_with_pieces(context):
# Verify that the response contains both token IDs and pieces
assert all(
"id" in token and "piece" in token for token in context.tokens_with_pieces
)
@step('tokenizing')
@async_run_until_complete
async def step_tokenize(context):
context.tokenized_text = context_text(context)
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
tokenize_args = {
"content": context.tokenized_text,
}
if getattr(context, 'tokenize_add_special', None) is not None:
tokenize_args['add_special'] = context.tokenize_add_special
async with session.post(f'{context.base_url}/tokenize',
json=tokenize_args) as response:
assert response.status == 200
tokenize_json = await response.json()
context.tokens = tokenize_json['tokens']
@step('tokens can be detokenized')
@async_run_until_complete
async def step_detokenize(context):
assert len(context.tokens) > 0
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
async with session.post(f'{context.base_url}/detokenize',
json={
"tokens": context.tokens,
}) as response:
assert response.status == 200
detokenize_json = await response.json()
# SPM tokenizer adds a whitespace prefix: https://github.com/google/sentencepiece/issues/15
assert context.tokenized_text == detokenize_json['content'].strip()
@step('tokens begin with BOS')
def step_strings_for_tokenization(context):
assert context.tokens[0] == context.bos
@step('tokens do not begin with BOS')
def step_strings_for_tokenization(context):
assert context.tokens[0] != context.bos
@step('first token is removed')
def step_strings_for_tokenization(context):
context.tokens = context.tokens[1:]
@step('an OPTIONS request is sent from {origin}')
@async_run_until_complete
async def step_options_request(context, origin):
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
headers = {'Authorization': f'Bearer {context.user_api_key}', 'Origin': origin}
async with session.options(f'{context.base_url}/v1/chat/completions',
headers=headers) as response:
assert response.status == 200
context.options_response = response
@step('CORS header {cors_header} is set to {cors_header_value}')
def step_check_options_header_value(context, cors_header, cors_header_value):
assert context.options_response.headers[cors_header] == cors_header_value
@step('prometheus metrics are exposed')
@async_run_until_complete
async def step_prometheus_metrics_exported(context):
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
async with await session.get(f'{context.base_url}/metrics') as metrics_response:
assert metrics_response.status == 200
assert metrics_response.headers['Content-Type'] == "text/plain; version=0.0.4"
metrics_raw = await metrics_response.text()
metric_exported = False
if context.debug:
print(f"/metrics answer:\n{metrics_raw}")
context.metrics = {}
for metric in parser.text_string_to_metric_families(metrics_raw):
match metric.name:
case "llamacpp:kv_cache_usage_ratio":
assert len(metric.samples) > 0
metric_exported = True
context.metrics[metric.name] = metric
assert int(metrics_response.headers["Process-Start-Time-Unix"]) > 0, "no header process start time"
assert metric_exported, "No metrics exported"
@step('metric {metric_name} is {metric_value:d}')
def step_assert_metric_value(context, metric_name, metric_value):
if metric_name not in context.metrics:
assert False, f"no metric {metric_name} in {context.metrics.keys()}"
assert context.metrics[metric_name].samples[0].value == metric_value, f"metric: {context.metrics[metric_name]}"
@step('available models')
def step_available_models(context):
# openai client always expects an api_key
openai.api_key = context.user_api_key if context.user_api_key is not None else 'nope'
openai.base_url = f'{context.base_url}/v1/'
context.models = openai.models.list().data
@step('{n_model:d} models are supported')
def step_supported_models(context, n_model):
if context.debug:
print("server models available:", context.models)
assert len(context.models) == n_model
@step('model {i_model:d} is {param} {preposition} {param_value}')
def step_supported_models(context, i_model: int, param: Literal['identified', 'trained'] | str, preposition: str, param_value: str):
assert i_model < len(context.models)
model = context.models[i_model]
param_value = param_value.split(' ', 1)[0]
match param:
case 'identified':
value = model.id
case 'trained':
value = str(model.meta["n_ctx_train"])
case _:
assert False, "param {param} not supported"
assert param_value == value, f"model param {param} {value} != {param_value}"
async def concurrent_requests(context, f_completion, *args, **kwargs):
context.n_prompts = len(context.prompts)
if context.debug:
print(f"starting {context.n_prompts} concurrent completion requests...")
assert context.n_prompts > 0
seeds = await completions_seed(context)
assert seeds is not None
for prompt_no in range(context.n_prompts):
shifted_args = [context.prompts.pop(), seeds[prompt_no], *args]
context.concurrent_tasks.append(asyncio.create_task(f_completion(*shifted_args, **kwargs)))
await asyncio.sleep(0.01)
@step('the slot {slot_id:d} is saved with filename "{filename}"')
@async_run_until_complete
async def step_save_slot(context, slot_id, filename):
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
async with session.post(f'{context.base_url}/slots/{slot_id}?action=save',
json={"filename": filename},
headers={"Content-Type": "application/json"}) as response:
context.response = response
@step('the slot {slot_id:d} is restored with filename "{filename}"')
@async_run_until_complete
async def step_restore_slot(context, slot_id, filename):
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
async with session.post(f'{context.base_url}/slots/{slot_id}?action=restore',
json={"filename": filename},
headers={"Content-Type": "application/json"}) as response:
context.response = response
@step('the slot {slot_id:d} is erased')
@async_run_until_complete
async def step_erase_slot(context, slot_id):
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
async with session.post(f'{context.base_url}/slots/{slot_id}?action=erase',
headers={"Content-Type": "application/json"}) as response:
context.response = response
@step('switch {on_or_off} lora adapter {lora_id:d}')
@async_run_until_complete
async def toggle_lora_adapter(context, on_or_off: str, lora_id: int):
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
async with session.post(f'{context.base_url}/lora-adapters',
json=[{'id': lora_id, 'scale': 1 if on_or_off == 'on' else 0}],
headers={"Content-Type": "application/json"}) as response:
context.response = response
print([{'id': lora_id, 'scale': 1 if on_or_off == 'on' else 0}])
@step('the server responds with status code {status_code:d}')
def step_server_responds_with_status_code(context, status_code):
assert context.response.status == status_code
async def request_completion(prompt,
seed,
base_url,
debug=False,
prompt_prefix=None,
prompt_suffix=None,
n_predict=None,
cache_prompt=False,
id_slot=None,
expect_api_error=None,
user_api_key=None,
temperature=None) -> int | dict[str, Any]:
if debug:
print(f"Sending completion request: {prompt}")
origin = "my.super.domain"
headers = {
'Origin': origin
}
if user_api_key is not None:
if debug:
print(f"Set user_api_key: {user_api_key}")
headers['Authorization'] = f'Bearer {user_api_key}'
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
async with session.post(f'{base_url}/completion',
json={
"input_prefix": prompt_prefix,
"prompt": prompt,
"input_suffix": prompt_suffix,
"n_predict": n_predict if n_predict is not None else -1,
"cache_prompt": cache_prompt,
"id_slot": id_slot,
"seed": seed if seed is not None else 42,
"temperature": temperature if temperature is not None else 0.8,
"n_probs": 2,
},
headers=headers) as response:
if expect_api_error is None or not expect_api_error:
assert response.status == 200
assert response.headers['Access-Control-Allow-Origin'] == origin
return await response.json()
else:
return response.status
async def oai_chat_completions(user_prompt,
seed,
system_prompt,
base_url: str,
base_path: str,
async_client,
debug=False,
temperature=None,
model=None,
n_predict=None,
enable_streaming=None,
response_format=None,
user_api_key=None,
expect_api_error=None) -> int | dict[str, Any]:
if debug:
print(f"Sending OAI Chat completions request: {user_prompt}")
# openai client always expects an api key
user_api_key = user_api_key if user_api_key is not None else 'nope'
seed = seed if seed is not None else 42
enable_streaming = enable_streaming if enable_streaming is not None else False
payload = {
"messages": [
{
"role": "system",
"content": system_prompt,
},
{
"role": "user",
"content": user_prompt,
}
],
"model": model,
"max_tokens": n_predict,
"stream": enable_streaming,
"temperature": temperature if temperature is not None else 0.0,
"seed": seed,
}
if response_format is not None:
payload['response_format'] = response_format
completion_response = {
'content': '',
'timings': {
'predicted_n': 0,
'prompt_n': 0
}
}
if async_client:
origin = 'llama.cpp'
headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin}
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
async with session.post(f'{base_url}{base_path}',
json=payload,
headers=headers) as response:
if enable_streaming:
assert response.status == 200
assert response.headers['Access-Control-Allow-Origin'] == origin
assert response.headers['Content-Type'] == "text/event-stream"
event_received = True
while event_received:
event_received = False
async for line_in_bytes in response.content:
line = line_in_bytes.decode('utf-8')
line = line.rstrip('\n').rstrip('\r')
if line == '':
continue
event_data = line.split(': ', 1)
assert event_data[0] == 'data', f'Bad event code received: ```{event_data}```'
chunk_raw = event_data[1]
if chunk_raw == '[DONE]':
break
chunk = json.loads(chunk_raw)
assert len(chunk['choices']) == 1, f"no choices provided, line ```{line}```"
delta = chunk['choices'][0]['delta']
if 'content' in delta:
completion_response['content'] += delta['content']
completion_response['timings']['predicted_n'] += 1
else:
if expect_api_error is None or not expect_api_error:
assert response.status == 200
assert response.headers['Access-Control-Allow-Origin'] == origin
assert response.headers['Content-Type'] == "application/json; charset=utf-8"
chat_completion_raw = await response.json()
completion_response = {
'content': chat_completion_raw['choices'][0]['message'],
'timings': {
'predicted_n': chat_completion_raw['usage']['completion_tokens'],
'prompt_n': chat_completion_raw['usage']['prompt_tokens']
}
}
else:
return response.status
else:
try:
openai.api_key = user_api_key
openai.base_url = f'{base_url}{base_path.removesuffix("chat")}'
assert model is not None
chat_completion = openai.chat.completions.create(
messages=payload['messages'],
model=model,
max_tokens=n_predict,
stream=enable_streaming,
response_format=payload.get('response_format') or openai.NOT_GIVEN,
seed=seed,
temperature=payload['temperature']
)
except openai.AuthenticationError as e:
if expect_api_error is not None and expect_api_error:
return 401
else:
assert False, f'error raised: {e}'
if enable_streaming:
chat_completion = cast(openai.Stream[ChatCompletionChunk], chat_completion)
for chunk in chat_completion:
assert len(chunk.choices) == 1
delta = chunk.choices[0].delta
if delta.content is not None:
completion_response['content'] += delta.content
completion_response['timings']['predicted_n'] += 1
completion_response['truncated'] = chunk.choices[0].finish_reason != 'stop'
else:
assert len(chat_completion.choices) == 1
assert chat_completion.usage is not None
completion_response = {
'content': chat_completion.choices[0].message.content,
'timings': {
'predicted_n': chat_completion.usage.completion_tokens,
'prompt_n': chat_completion.usage.prompt_tokens
},
'truncated': chat_completion.choices[0].finish_reason != 'stop'
}
if debug:
print("OAI response formatted to llama.cpp:", completion_response)
return completion_response
async def request_embedding(content, seed, base_url=None) -> list[list[float]] | int:
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
async with session.post(f'{base_url}/embedding',
json={
"content": content,
}) as response:
if response.status == 200:
response_json = await response.json()
return [response_json['embedding']]
else:
return response.status
async def request_oai_embeddings(input, seed,
base_url=None, user_api_key=None,
model=None, async_client=False) -> list[list[float]]:
# openai client always expects an api_key
user_api_key = user_api_key if user_api_key is not None else 'nope'
if async_client:
origin = 'llama.cpp'
headers=[]
if user_api_key is not None:
headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin}
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
async with session.post(f'{base_url}/v1/embeddings',
json={
"input": input,
"model": model,
},
headers=headers) as response:
assert response.status == 200, f"received status code not expected: {response.status}"
assert response.headers['Access-Control-Allow-Origin'] == origin
assert response.headers['Content-Type'] == "application/json; charset=utf-8"
response_json = await response.json()
assert response_json['model'] == model, f"invalid model received: {response_json['model']}"
assert response_json['object'] == 'list'
if isinstance(input, Sequence):
embeddings = []
for an_oai_embeddings in response_json['data']:
embeddings.append(an_oai_embeddings['embedding'])
else:
embeddings = [response_json['data']['embedding']]
return embeddings
else:
openai.api_key = user_api_key
openai.base_url = f'{base_url}/v1/'
assert model is not None
oai_embeddings = openai.embeddings.create(
model=model,
input=input,
)
return [e.embedding for e in oai_embeddings.data]
def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, re_content=None):
content = completion_response['content']
n_predicted = completion_response['timings']['predicted_n']
assert len(content) > 0, "no token predicted"
if re_content is not None:
p = re.compile(re_content, flags=RegexFlag.IGNORECASE | RegexFlag.MULTILINE | RegexFlag.DOTALL)
matches = p.finditer(content)
last_match = 0
highlighted = ''
for match in matches:
start, end = match.span()
highlighted += content[last_match: start]
highlighted += '\x1b[33m'
highlighted += content[start: end]
highlighted += '\x1b[0m'
last_match = end
highlighted += content[last_match:]
if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
print(f"Checking completion response: {highlighted}")
assert last_match > 0, f'/{re_content}/ must match ```{highlighted}```'
if expected_predicted_n and expected_predicted_n > 0:
assert n_predicted == expected_predicted_n, (f'invalid number of tokens predicted:'
f' {n_predicted} <> {expected_predicted_n}')
def assert_all_predictions_equal(completion_responses):
if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
for i, response_i in enumerate(completion_responses):
content_i = response_i['content']
print(f"content {i}: {content_i}")
for i, response_i in enumerate(completion_responses):
content_i = response_i['content']
for j, response_j in enumerate(completion_responses):
if i == j:
continue
content_j = response_j['content']
assert content_i == content_j, "contents not equal"
def assert_all_predictions_different(completion_responses):
if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
for i, response_i in enumerate(completion_responses):
content_i = response_i['content']
print(f"content {i}: {content_i}")
for i, response_i in enumerate(completion_responses):
content_i = response_i['content']
for j, response_j in enumerate(completion_responses):
if i == j:
continue
content_j = response_j['content']
assert content_i != content_j, "contents not different"
def assert_all_token_probabilities_equal(completion_responses):
n_predict = len(completion_responses[0]['completion_probabilities'])
if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
for pos in range(n_predict):
for i, response_i in enumerate(completion_responses):
probs_i = response_i['completion_probabilities'][pos]['probs']
print(f"pos {pos}, probs {i}: {probs_i}")
for pos in range(n_predict):
for i, response_i in enumerate(completion_responses):
probs_i = response_i['completion_probabilities'][pos]['probs']
for j, response_j in enumerate(completion_responses):
if i == j:
continue
probs_j = response_j['completion_probabilities'][pos]['probs']
assert probs_i == probs_j, "contents not equal"
async def gather_tasks_results(context):
n_tasks = len(context.concurrent_tasks)
if context.debug:
print(f"Waiting for all {n_tasks} tasks results...")
for task_no in range(n_tasks):
context.tasks_result.append(await context.concurrent_tasks.pop())
n_completions = len(context.tasks_result)
return n_completions
async def wait_for_slots_status(context,
base_url,
expected_http_status_code,
timeout=3,
params=None,
slots_idle=None,
slots_processing=None):
if context.debug:
print(f"Starting checking for health for expected_http_status_code={expected_http_status_code}")
interval = 0.5
counter = 0
if 'GITHUB_ACTIONS' in os.environ:
timeout *= 2
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
while True:
headers = {'Authorization': f'Bearer {context.server_api_key}'}
async with await session.get(f'{base_url}/slots', params=params, headers=headers) as slots_response:
status_code = slots_response.status
slots = await slots_response.json()
if context.debug:
print(f"slots responses {slots}\n")
if status_code == 503 and status_code == expected_http_status_code:
return
if status_code == 200 and status_code == expected_http_status_code:
n_slots_idle = sum(1 if not slot["is_processing"] else 0 for slot in slots)
n_slots_processing = sum(1 if slot["is_processing"] else 0 for slot in slots)
if ((slots_idle is None or slots_idle == n_slots_idle)
and (slots_processing is None or slots_processing == n_slots_processing)):
return
await asyncio.sleep(interval)
counter += interval
if counter >= timeout:
# Sometimes health requests are triggered after completions are predicted
if expected_http_status_code == 503:
if len(context.tasks_result) == 0:
print("\x1b[5;37;43mWARNING: forcing concurrent tasks,"
" busy health check missed, probably too fast inference\x1b[0m\n")
n_completions = await gather_tasks_results(context)
if n_completions > 0:
return
assert False, f'slots check timeout exceeded {counter}s>={timeout}'
def assert_embeddings(embeddings):
assert len(embeddings) > 0
embeddings_computed = False
for emb in embeddings:
if not isinstance(emb, float):
assert False, f"Bad embeddings: {embeddings}"
if emb != 0:
embeddings_computed = True
assert embeddings_computed, f"Embeddings: {embeddings}"
async def request_slots_status(context, expected_slots):
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
async with await session.get(f'{context.base_url}/slots') as slots_response:
assert slots_response.status == 200
slots = await slots_response.json()
assert_slots_status(slots, expected_slots)
def assert_slots_status(slots, expected_slots):
assert len(slots) == len(expected_slots)
for slot_id, (expected, slot) in enumerate(zip(expected_slots, slots)):
for key in expected:
assert expected[key] == slot[key], (f"invalid slot {slot_id}"
f" expected[{key}] != slot[{key}]"
f" = {expected[key]} != {slot[key]}")
async def completions_seed(context, num_seeds=None):
if hasattr(context, "seed") and context.seed is not None:
assert len(context.seed) == context.n_prompts
if num_seeds is None:
num_seeds = context.n_prompts
assert num_seeds <= context.n_prompts
seeds = context.seed[:num_seeds]
context.seed = context.seed[num_seeds:] if num_seeds < context.n_prompts else None
return seeds
if hasattr(context, "server_seed") and context.server_seed is not None:
if num_seeds is None:
return [context.server_seed] * context.n_prompts
else:
return [context.server_seed] * num_seeds
return None
def context_text(context):
return context.text.replace('\r', '')
def start_server_background(context):
if os.name == 'nt':
context.server_path = '../../../build/bin/Release/llama-server.exe'
else:
context.server_path = '../../../build/bin/llama-server'
if 'LLAMA_SERVER_BIN_PATH' in os.environ:
context.server_path = os.environ['LLAMA_SERVER_BIN_PATH']
server_listen_addr = context.server_fqdn
server_args = [
'--slots', # requires to get slot status via /slots endpoint
'--host', server_listen_addr,
'--port', context.server_port,
]
if context.model_file:
server_args.extend(['--model', context.model_file])
if context.model_url:
server_args.extend(['--model-url', context.model_url])
if context.model_hf_repo:
server_args.extend(['--hf-repo', context.model_hf_repo])
if context.model_hf_file:
server_args.extend(['--hf-file', context.model_hf_file])
if context.n_batch:
server_args.extend(['--batch-size', context.n_batch])
if context.n_ubatch:
server_args.extend(['--ubatch-size', context.n_ubatch])
if context.n_threads:
server_args.extend(['--threads', context.threads])
if context.n_gpu_layer:
server_args.extend(['--n-gpu-layers', context.n_gpu_layer])
if context.draft is not None:
server_args.extend(['--draft', context.draft])
if context.server_continuous_batching:
server_args.append('--cont-batching')
if context.server_embeddings:
server_args.append('--embedding')
if context.server_reranking:
server_args.append('--reranking')
if context.server_metrics:
server_args.append('--metrics')
if context.model_alias:
server_args.extend(['--alias', context.model_alias])
if context.n_ctx:
server_args.extend(['--ctx-size', context.n_ctx])
if context.n_slots:
server_args.extend(['--parallel', context.n_slots])
if context.n_server_predict:
server_args.extend(['--n-predict', context.n_server_predict])
if context.slot_save_path:
server_args.extend(['--slot-save-path', context.slot_save_path])
if context.server_api_key:
server_args.extend(['--api-key', context.server_api_key])
if context.n_ga:
server_args.extend(['--grp-attn-n', context.n_ga])
if context.n_ga_w:
server_args.extend(['--grp-attn-w', context.n_ga_w])
if context.debug:
server_args.append('--verbose')
if context.lora_file:
server_args.extend(['--lora', context.lora_file])
if context.disable_ctx_shift:
server_args.extend(['--no-context-shift'])
args = [str(arg) for arg in [context.server_path, *server_args]]
print(f"bench: starting server with: {' '.join(args)}")
flags = 0
if 'nt' == os.name:
flags |= subprocess.DETACHED_PROCESS
flags |= subprocess.CREATE_NEW_PROCESS_GROUP
flags |= subprocess.CREATE_NO_WINDOW
pkwargs = {
'creationflags': flags,
'stdout': subprocess.PIPE,
'stderr': subprocess.PIPE
}
context.server_process = subprocess.Popen(
[str(arg) for arg in [context.server_path, *server_args]],
**pkwargs) # pyright: ignore[reportArgumentType, reportCallIssue]
def server_log(in_stream, out_stream):
for line in iter(in_stream.readline, b''):
print(line.decode('utf-8'), end='', file=out_stream)
thread_stdout = threading.Thread(target=server_log, args=(context.server_process.stdout, sys.stdout))
thread_stdout.start()
thread_stderr = threading.Thread(target=server_log, args=(context.server_process.stderr, sys.stderr))
thread_stderr.start()
print(f"server pid={context.server_process.pid}, behave pid={os.getpid()}")
|