File size: 25,045 Bytes
57e3690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
#include "arg.h"
#include "common.h"
#include "sampling.h"
#include "log.h"
#include "llama.h"

#include <algorithm>
#include <cstdio>
#include <cstring>
#include <random>
#include <set>
#include <string>
#include <vector>

#define SPEC_VOCAB_MAX_SIZE_DIFFERENCE  100
#define SPEC_VOCAB_CHECK_START_TOKEN_ID 5

struct seq_draft {
    bool active   = false;
    bool drafting = false;
    bool skip     = false;

    int i_batch_dft = 0;
    std::vector<int> i_batch_tgt;

    std::vector<llama_token> tokens;
    std::vector<std::vector<llama_token_data>> dists;

    struct common_sampler * smpl = nullptr;
};

int main(int argc, char ** argv) {
    common_params params;

    // needed to get candidate probs even for temp <= 0.0
    params.sparams.n_probs = 128;

    if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SPECULATIVE)) {
        return 1;
    }

    if (params.n_predict < -1) {
        LOG_ERR("%s: --n-predict must be >= -1\n", __func__);
        return 1;
    }

    common_init();

    if (params.model_draft.empty()) {
        LOG_ERR("%s: --model-draft is required\n", __func__);
        return 1;
    }

    // max number of parallel drafting sequences (i.e. tree branches)
    const int n_seq_dft = params.n_parallel;

    // probability threshold for splitting a draft branch (only for n_seq_dft > 1)
    const float p_split  = params.p_split;

    std::default_random_engine rng(params.sparams.seed == LLAMA_DEFAULT_SEED ? std::random_device()() : params.sparams.seed);
    std::uniform_real_distribution<> u_dist;

    // init llama.cpp
    llama_backend_init();
    llama_numa_init(params.numa);

    llama_model * model_tgt = NULL;
    llama_model * model_dft = NULL;

    llama_context * ctx_tgt = NULL;
    llama_context * ctx_dft = NULL;

    // load the target model
    common_init_result llama_init_tgt = common_init_from_params(params);
    model_tgt = llama_init_tgt.model;
    ctx_tgt = llama_init_tgt.context;

    // load the draft model
    params.model = params.model_draft;
    params.n_gpu_layers = params.n_gpu_layers_draft;
    if (params.draft_cpuparams.n_threads > 0) {
        params.cpuparams.n_threads = params.draft_cpuparams.n_threads;
    }

    params.cpuparams_batch.n_threads = params.draft_cpuparams_batch.n_threads;
    common_init_result llama_init_dft = common_init_from_params(params);
    model_dft = llama_init_dft.model;
    ctx_dft = llama_init_dft.context;

    const bool vocab_type_tgt = llama_vocab_type(model_tgt);
    LOG_DBG("vocab_type tgt: %d\n", vocab_type_tgt);

    const bool vocab_type_dft = llama_vocab_type(model_dft);
    LOG_DBG("vocab_type dft: %d\n", vocab_type_dft);

    if (vocab_type_tgt != vocab_type_dft) {
        LOG_ERR("%s: draft model vocab type must match target model to use speculation but ", __func__);
        LOG_ERR("vocab_type_dft = %d while vocab_type_tgt = %d\n", vocab_type_dft, vocab_type_tgt);
        return 1;
    }

    if (
        llama_add_bos_token(model_tgt) != llama_add_bos_token(model_dft) ||
        llama_add_eos_token(model_tgt) != llama_add_eos_token(model_dft) ||
        llama_token_bos(model_tgt) != llama_token_bos(model_dft) ||
        llama_token_eos(model_tgt) != llama_token_eos(model_dft)
    ) {
        LOG_ERR("%s: draft model special tokens must match target model to use speculation\n", __func__);
        return 1;
    }

    {
        const int n_vocab_tgt = llama_n_vocab(model_tgt);
        const int n_vocab_dft = llama_n_vocab(model_dft);
        const int vocab_diff  = n_vocab_tgt > n_vocab_dft
            ? n_vocab_tgt - n_vocab_dft
            : n_vocab_dft - n_vocab_tgt;

        if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) {
            LOG_ERR("%s: draft model vocab must closely match target model to use speculation but ", __func__);
            LOG_ERR("target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
                    n_vocab_tgt, llama_n_vocab(model_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
            return 1;
        }

        for (int i = SPEC_VOCAB_CHECK_START_TOKEN_ID; i < std::min(n_vocab_tgt, n_vocab_dft); ++i) {
            const char * token_text_tgt = llama_token_get_text(model_tgt, i);
            const char * token_text_dft = llama_token_get_text(model_dft, i);
            if (std::strcmp(token_text_tgt, token_text_dft) != 0) {
                LOG_ERR("%s: draft model vocab must match target model to use speculation but ", __func__);
                LOG_ERR("token %d content differs - target '%s', draft '%s'\n", i,
                        common_token_to_piece(ctx_tgt, i).c_str(),
                        common_token_to_piece(ctx_dft, i).c_str());
                return 1;
            }
        }
    }


    // Tokenize the prompt
    std::vector<llama_token> inp;
    inp = common_tokenize(ctx_tgt, params.prompt, true, true);

    const int max_context_size     = llama_n_ctx(ctx_tgt);
    const int max_tokens_list_size = max_context_size - 4;

    if ((int) inp.size() > max_tokens_list_size) {
        LOG_ERR("%s: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
        return 1;
    }

    LOG("\n\n");

    for (auto id : inp) {
        LOG("%s", common_token_to_piece(ctx_tgt, id).c_str());
    }

    const int n_input = inp.size();

    const auto t_enc_start = ggml_time_us();

    // eval the prompt with both models
    llama_decode(ctx_tgt, llama_batch_get_one( inp.data(), n_input - 1));
    llama_decode(ctx_tgt, llama_batch_get_one(&inp.back(),           1));
    llama_decode(ctx_dft, llama_batch_get_one( inp.data(), n_input));

    const auto t_enc_end = ggml_time_us();

    // the 2 models should have the same vocab
    //GGML_ASSERT(n_vocab == llama_n_vocab(model_dft));

    // how many tokens to draft each time
    int n_draft = params.n_draft;

    int n_predict = 0;
    int n_drafted = 0;
    int n_accept  = 0;

    int n_past_tgt = inp.size();
    int n_past_dft = inp.size();

    // used to determine end of generation
    bool has_eos = false;

    // target model sampling context (reuse the llama_context's sampling instance)
    struct common_sampler * smpl = common_sampler_init(model_tgt, params.sparams);

    // draft sequence data
    std::vector<seq_draft> drafts(n_seq_dft);

    for (int s = 0; s < n_seq_dft; ++s) {
        // allocate llama_sampler for each draft sequence
        drafts[s].smpl = common_sampler_init(model_dft, params.sparams);
    }

    llama_batch batch_dft = llama_batch_init(llama_n_batch(ctx_dft), 0, 1);
    llama_batch batch_tgt = llama_batch_init(llama_n_batch(ctx_tgt), 0, n_seq_dft);

    const auto t_dec_start = ggml_time_us();

    // sample from the last token of the prompt
    drafts[0].i_batch_tgt.resize(1);
    drafts[0].i_batch_tgt[0] = 0;

    while (true) {
        std::set<int> active_seqs = {};

        // print current draft sequences
        for (int s = 0; s < n_seq_dft; ++s) {
            if (!drafts[s].active) {
                continue;
            }

            active_seqs.insert(s);
            const auto & tokens = drafts[s].tokens;

            LOG_DBG("draft %d: %s\n", s, string_from(ctx_dft, tokens).c_str());
        }

        int i_dft  = 0;
        int s_keep = 0;

        llama_token token_id;
        std::string token_str;

        // loop until we fail to accept a drafted token or we run out of drafted tokens
        while (true) {

            // check if the target token matches any of the drafts
            // for stochastic sampling, attempt to match the token with the drafted tokens
            {
                bool accept = false;
                if (params.sparams.temp > 0) {
                    // stochastic verification
                    common_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft], true);

                    auto & dist_tgt = *common_sampler_get_candidates(smpl);

                    float p_tgt = 0.0f;
                    float p_dft = 0.0f;

                    while (active_seqs.size() > 0) {
                        // randomly select a sequence to verify from active sequences
                        std::uniform_int_distribution<unsigned int> u_int_dist(0, active_seqs.size() - 1);
                        int s = *std::next(active_seqs.begin(), u_int_dist(rng));
                        if (i_dft >= (int) drafts[s].tokens.size()) {
                            drafts[s].active = false;
                            active_seqs.erase(s);
                            continue;
                        }
                        if (accept) {
                            // if we already accepted a token, we can skip the rest
                            if (drafts[s].tokens[i_dft] != drafts[s_keep].tokens[i_dft]) {
                                drafts[s].active = false;
                                active_seqs.erase(s);
                            }
                            continue;
                        }

                        LOG_DBG("verifying sequence #%d at pos #%d from %d active sequence(s)\n", s, i_dft, (int) active_seqs.size());
                        float r = u_dist(rng);
                        llama_token_data_array dist_dft = { drafts[s].dists[i_dft].data() , drafts[s].dists[i_dft].size(), LLAMA_TOKEN_NULL, true };

                        //GGML_ASSERT(dist_tgt.size <= dist_dft.size);

                        // acquire the token probabilities assigned by the draft and target models
                        for (size_t i = 0; i < dist_tgt.size; i++) {
                            if (dist_tgt.data[i].id == drafts[s].tokens[i_dft]) {
                                p_tgt = dist_tgt.data[i].p;
                            }
                            if (dist_dft.data[i].id == drafts[s].tokens[i_dft]) {
                                p_dft = dist_dft.data[i].p;
                            }
                            if (p_tgt && p_dft) {
                                break;
                            }
                        }
                        LOG_DBG("r = %f, p_dft = %f, p_tgt = %f\n", r, p_dft, p_tgt);
                        if (r <= p_tgt / p_dft) {
                            s_keep = s;
                            accept = true;
                            token_id = drafts[s].tokens[i_dft];
                            token_str = common_token_to_piece(ctx_tgt, token_id);
                            common_sampler_accept(smpl, token_id, true);

                            LOG_DBG("draft token %d of sequence %d (%d, '%s') accepted\n", i_dft, s, token_id, token_str.c_str());
                            break;
                        } else {
                            LOG_DBG("draft token %d of sequence %d (%d, '%s') rejected\n", i_dft, s, drafts[s].tokens[i_dft], common_token_to_piece(ctx_tgt, drafts[s].tokens[i_dft]).c_str());
                            drafts[s].active = false;

                            // calculate residual probability
                            GGML_ASSERT(dist_tgt.sorted);
                            GGML_ASSERT(dist_dft.sorted);

                            // sort dist by id
                            std::sort(dist_tgt.data, dist_tgt.data + dist_tgt.size, [](const llama_token_data &a, const llama_token_data &b) {
                                return a.id < b.id;
                            });
                            std::sort(dist_dft.data, dist_dft.data + dist_dft.size, [](const llama_token_data &a, const llama_token_data &b) {
                                return a.id < b.id;
                            });

                            float sum_probs = 0.0f;

                            for (size_t i = 0; i < dist_tgt.size; i++) {
                                if (i < dist_dft.size) {
                                    dist_tgt.data[i].p = std::max(0.0f, dist_tgt.data[i].p - dist_dft.data[i].p);
                                } else {
                                    dist_tgt.data[i].p = std::max(0.0f, dist_tgt.data[i].p);
                                }

                                sum_probs += dist_tgt.data[i].p;
                            }

                            for (size_t i = 0; i < dist_tgt.size; i++) {
                                dist_tgt.data[i].p /= sum_probs;
                            }

                            // sort dist_tgt by p desc
                            std::sort(dist_tgt.data, dist_tgt.data + dist_tgt.size, [](const llama_token_data &a, const llama_token_data &b) {
                                return a.p > b.p;
                            });
                        }

                        active_seqs.erase(s);
                        for(int i = 0; i < n_seq_dft; i++) {
                            if (i == s) {
                                continue;
                            }
                            if (drafts[i].tokens[i_dft] == drafts[s].tokens[i_dft]) {
                                // synchronize active status for sequences with the same drafted token
                                drafts[i].active = drafts[i].active && accept;
                                if (!drafts[i].active) {
                                    active_seqs.erase(s);
                                }
                            }
                        }
                    }

                    if (!accept) {
                        // all drafted tokens were rejected
                        // sample from the target model
                        LOG_DBG("all drafted tokens were rejected, sampling from residual distribution\n");
                        std::vector<float> probs(dist_tgt.size);
                        for (size_t i = 0; i < dist_tgt.size; ++i) {
                            probs[i] = dist_tgt.data[i].p;
                        }

                        std::discrete_distribution<> dist(probs.begin(), probs.end());

                        const int idx = dist(rng);

                        token_id = dist_tgt.data[idx].id;
                        common_sampler_accept(smpl, token_id, true);
                        token_str = common_token_to_piece(ctx_tgt, token_id);
                    }
                } else {
                    // greedy verification

                    // sample from the target model
                    LOG_DBG("sampling target: s_keep = %3d, i_dft = %3d, i_batch_tgt = %3d\n", s_keep, i_dft, drafts[s_keep].i_batch_tgt[i_dft]);
                    token_id = common_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft]);

                    common_sampler_accept(smpl, token_id, true);

                    token_str = common_token_to_piece(ctx_tgt, token_id);

                    for (int s = 0; s < n_seq_dft; ++s) {
                        if (!drafts[s].active) {
                            continue;
                        }

                        if (i_dft < (int) drafts[s].tokens.size() && token_id == drafts[s].tokens[i_dft]) {
                            LOG_DBG("the sampled target token matches the %dth drafted token of sequence %d (%d, '%s') - accepted\n", i_dft, s, token_id, token_str.c_str());

                            s_keep = s;
                            accept = true;
                        } else {
                            drafts[s].active = false;
                        }
                    }
                }

                if (llama_token_is_eog(model_tgt, token_id)) {
                    has_eos = true;
                }
                ++n_predict;

                if (accept) {
                    ++n_accept;
                    ++n_past_tgt;
                    ++n_past_dft;
                    ++i_dft;
                    if (params.use_color) {
                        // Color token according to its origin sequence
                        LOG("\u001b[%dm%s\u001b[37m", (36 - s_keep % 6), token_str.c_str());
                    } else {
                        LOG("%s", token_str.c_str());
                    }
                    continue;
                } else {
                    LOG("%s", token_str.c_str());
                    break;
                }
            }
        }

        {
            LOG_DBG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", token_id, token_str.c_str());

            // TODO: simplify
            {
                LOG_DBG("keeping sequence %d, n_past_tgt = %d, n_past_dft = %d\n", s_keep, n_past_tgt, n_past_dft);

                llama_kv_cache_seq_keep(ctx_dft, s_keep);
                llama_kv_cache_seq_cp  (ctx_dft, s_keep, 0, -1, -1);
                llama_kv_cache_seq_keep(ctx_dft, 0);

                llama_kv_cache_seq_rm  (ctx_tgt, s_keep, n_past_tgt, -1);
                llama_kv_cache_seq_keep(ctx_tgt, s_keep);
                llama_kv_cache_seq_cp  (ctx_tgt, s_keep, 0, -1, -1);
                llama_kv_cache_seq_keep(ctx_tgt, 0);
            }

            for (int s = 0; s < n_seq_dft; ++s) {
                drafts[s].active = false;
                drafts[s].tokens.clear();
                drafts[s].i_batch_tgt.clear();
                drafts[s].dists.clear();
            }
            // note: will be erased after the speculation phase
            drafts[0].tokens.push_back(token_id);
            drafts[0].dists.push_back(std::vector<llama_token_data>());
            drafts[0].i_batch_tgt.push_back(0);

            common_batch_clear(batch_dft);
            common_batch_add  (batch_dft, token_id, n_past_dft, { 0 }, true);

            llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1);
            // LOG_DBG("dft batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_dft, batch_dft).c_str());
            llama_decode(ctx_dft, batch_dft);

            ++n_past_dft;
        }

        if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) {
            break;
        }

        if (drafts[0].smpl) {
            common_sampler_free(drafts[0].smpl);
        }
        drafts[0].smpl = common_sampler_clone(smpl);

        int n_seq_cur  = 1;
        int n_past_cur = n_past_dft;

        for (int s = 0; s < n_seq_dft; ++s) {
            drafts[s].active   = false;
            drafts[s].drafting = false;
        }
        drafts[0].active      = true;
        drafts[0].drafting    = true;
        drafts[0].i_batch_dft = 0;

        common_batch_clear(batch_tgt);
        common_batch_add  (batch_tgt, drafts[0].tokens[0], n_past_tgt, { 0 }, true);

        // sample n_draft tokens from the draft model using tree-based sampling
        for (int i = 0; i < n_draft; ++i) {
            batch_dft.n_tokens = 0;

            for (int s = 0; s < n_seq_dft; ++s) {
                drafts[s].skip = false;
            }

            for (int s = 0; s < n_seq_dft; ++s) {
                if (!drafts[s].drafting || drafts[s].skip) {
                    continue;
                }

                common_sampler_sample(drafts[s].smpl, ctx_dft, drafts[s].i_batch_dft, true);

                const auto * cur_p = common_sampler_get_candidates(drafts[s].smpl);

                for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p->size); ++k) {
                    LOG_DBG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n",
                            k, s, i, cur_p->data[k].id, cur_p->data[k].p, common_token_to_piece(ctx_dft, cur_p->data[k].id).c_str());
                }

                std::vector<int> sa(1, s);

                // attempt to split the branch if the probability is high enough
                for (int f = 1; f < 8; ++f) {
                    if (n_seq_cur < n_seq_dft && cur_p->data[f].p > p_split) {
                        LOG_DBG("splitting seq %3d into %3d\n", s, n_seq_cur);

                        llama_kv_cache_seq_rm(ctx_dft,    n_seq_cur, -1, -1);
                        llama_kv_cache_seq_cp(ctx_dft, s, n_seq_cur, -1, -1);

                        // all previous tokens from this branch are now also part of the new branch
                        for (int t = 0; t < batch_tgt.n_tokens; ++t) {
                            for (int p = 0; p < batch_tgt.n_seq_id[t]; ++p) {
                                if (batch_tgt.seq_id[t][p] == s) {
                                    batch_tgt.seq_id[t][batch_tgt.n_seq_id[t]] = n_seq_cur;
                                    batch_tgt.n_seq_id[t]++;
                                    break;
                                }
                            }
                        }

                        // copy the draft state
                        drafts[n_seq_cur].active   = true;
                        drafts[n_seq_cur].drafting = true;
                        drafts[n_seq_cur].skip     = true;

                        drafts[n_seq_cur].tokens      = drafts[s].tokens;
                        drafts[n_seq_cur].dists       = drafts[s].dists;
                        drafts[n_seq_cur].i_batch_dft = drafts[s].i_batch_dft;
                        drafts[n_seq_cur].i_batch_tgt = drafts[s].i_batch_tgt;

                        if (drafts[n_seq_cur].smpl) {
                            common_sampler_free(drafts[n_seq_cur].smpl);
                        }
                        drafts[n_seq_cur].smpl = common_sampler_clone(drafts[s].smpl);

                        sa.push_back(n_seq_cur);

                        n_seq_cur++;
                    } else {
                        break;
                    }
                }

                // add drafted token for each sequence
                for (int is = 0; is < (int) sa.size(); ++is) {
                    const llama_token id = cur_p->data[is].id;

                    const int s = sa[is];

                    common_sampler_accept(drafts[s].smpl, id, true);

                    drafts[s].tokens.push_back(id);
                    // save cur_p.data into drafts[s].dists
                    drafts[s].dists.push_back({cur_p->data, cur_p->data + cur_p->size});

                    // add unique drafted tokens to the target batch
                    drafts[s].i_batch_tgt.push_back(batch_tgt.n_tokens);

                    common_batch_add(batch_tgt, id, n_past_tgt + i + 1, { s }, true);

                    // add the token to the batch for batched decoding with the draft model
                    drafts[s].i_batch_dft = batch_dft.n_tokens;

                    common_batch_add(batch_dft, id, n_past_cur, { s }, true);

                    if (batch_tgt.n_tokens > n_draft) {
                        drafts[s].drafting = false;
                    }
                }
            }

            // no sequence is drafting anymore
            if (batch_dft.n_tokens == 0) {
                break;
            }

            // evaluate the drafted tokens on the draft model
            llama_decode(ctx_dft, batch_dft);
            ++n_past_cur;
            ++n_drafted;

            if (batch_tgt.n_tokens > n_draft) {
                break;
            }
        }

        // evaluate the target model on the drafted tokens
        {
            llama_kv_cache_seq_keep(ctx_tgt, 0);
            for (int s = 1; s < n_seq_dft; ++s) {
                llama_kv_cache_seq_cp(ctx_tgt, 0, s, -1, -1);
            }

            // LOG_DBG("target batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_tgt, batch_tgt).c_str());
            llama_decode(ctx_tgt, batch_tgt);
            ++n_past_tgt;
        }

        // the first token is always proposed by the target model before the speculation loop so we erase it here
        for (int s = 0; s < n_seq_dft; ++s) {
            if (!drafts[s].active) {
                continue;
            }

            drafts[s].tokens.erase(drafts[s].tokens.begin());
            drafts[s].dists.erase(drafts[s].dists.begin());
        }
    }

    auto t_dec_end = ggml_time_us();

    LOG("\n\n");

    LOG_INF("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input,   (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
    LOG_INF("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict  / ((t_dec_end - t_dec_start) / 1e6f));

    LOG_INF("\n");
    LOG_INF("n_draft   = %d\n", n_draft);
    LOG_INF("n_predict = %d\n", n_predict);
    LOG_INF("n_drafted = %d\n", n_drafted);
    LOG_INF("n_accept  = %d\n", n_accept);
    LOG_INF("accept    = %.3f%%\n", 100.0f * n_accept / n_drafted);

    LOG_INF("\n");
    LOG_INF("draft:\n\n");
    // TODO: print sampling/grammar timings for all drafts
    llama_perf_context_print(ctx_dft);

    LOG_INF("\n");
    LOG_INF("target:\n\n");
    common_perf_print(ctx_tgt, smpl);

    common_sampler_free(smpl);
    for (int s = 0; s < n_seq_dft; ++s) {
        common_sampler_free(drafts[s].smpl);
    }

    llama_batch_free(batch_dft);

    llama_free(ctx_tgt);
    llama_free_model(model_tgt);

    llama_free(ctx_dft);
    llama_free_model(model_dft);

    llama_backend_free();

    LOG("\n\n");

    return 0;
}