File size: 7,122 Bytes
57e3690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
#include "kernel_operator.h"

// optimize me. Use template to avoid copy code.
using namespace AscendC;

#define BUFFER_NUM 2

#define QK8_0 32

class GET_ROW_Q8_0 {
   public:
    __aicore__ inline GET_ROW_Q8_0() {}
    __aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
                                int64_t *input_ne_ub, int64_t *indices_ne_ub,
                                size_t *indices_nb_ub, int64_t *output_ne_ub,
                                size_t *output_nb_ub) {
        int64_t op_block_num = GetBlockNum();
        int64_t op_block_idx = GetBlockIdx();

        for (int i = 0; i < 4; i++) {
            input_ne[i] = input_ne_ub[i];
            indices_ne[i] = indices_ne_ub[i];
            indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
            scale_ne[i] = input_ne_ub[i];
            output_ne[i] = output_ne_ub[i];
            output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
        }

        // one scale for a group.
        scale_ne[0] /= QK8_0;

        input_stride[0] = 1;
        scale_stride[0] = 1;
        output_stride[0] = 1;
        for (int i = 1; i < 4; i++) {
            input_stride[i] = input_stride[i - 1] * input_ne[i - 1];
            scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
        }

        group_size_in_row = input_ne[0] / QK8_0;
        int64_t scale_offset = input_ne[0] * input_ne[1] * input_ne[2] *
                               input_ne[3] * sizeof(int8_t);

        // Indices has two dims. n_elements = all rows should get.
        // dr, all rows should this thread get.
        uint64_t n_elements =
            indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
        dr = n_elements / op_block_num;

        uint64_t tails = n_elements % op_block_num;
        if (op_block_idx < tails) {
            dr += 1;
            ir = dr * op_block_idx;
        } else {
            ir = dr * op_block_idx + tails;
        }

        input_gm.SetGlobalBuffer((__gm__ int8_t *)input);
        scale_gm.SetGlobalBuffer((__gm__ half *)(input + scale_offset));
        indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
        output_gm.SetGlobalBuffer((__gm__ float *)output);

        pipe.InitBuffer(input_queue, BUFFER_NUM, QK8_0 * sizeof(int8_t));
        pipe.InitBuffer(cast_queue, BUFFER_NUM, QK8_0 * sizeof(half));
        pipe.InitBuffer(output_queue, BUFFER_NUM, QK8_0 * sizeof(float));
    }

    __aicore__ inline void copy_in(uint32_t offset) {
        LocalTensor<int8_t> input_local = input_queue.AllocTensor<int8_t>();
        DataCopy(input_local, input_gm[offset], QK8_0);
        input_queue.EnQue(input_local);
    }

    __aicore__ inline void copy_out(uint32_t offset) {
        LocalTensor<float> output_local = output_queue.DeQue<float>();
        DataCopy(output_gm[offset], output_local, QK8_0);
        output_queue.FreeTensor(output_local);
    }

    __aicore__ inline void calculate_group(int64_t idx, int64_t group) {
        const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
        const int64_t indices_ne1_idx =
            (idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
            indices_ne[0];
        const int64_t indices_ne0_idx =
            (idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
             indices_ne1_idx * indices_ne[0]);

        const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
                                       indices_ne1_idx * indices_stride[1] +
                                       indices_ne2_idx * indices_stride[2];
        const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);

        const int64_t input_offset = selected_row_idx * input_stride[1] +
                                     indices_ne1_idx * input_stride[2] +
                                     indices_ne2_idx * input_stride[3] +
                                     group * QK8_0;
        const int64_t scale_offset = selected_row_idx * scale_stride[1] +
                                     indices_ne1_idx * scale_stride[2] +
                                     indices_ne2_idx * scale_stride[3] + group;
        const int64_t output_offset = indices_ne0_idx * output_stride[1] +
                                      indices_ne1_idx * output_stride[2] +
                                      indices_ne2_idx * output_stride[3] +
                                      group * QK8_0;

        copy_in(input_offset);
        LocalTensor<int8_t> input_local = input_queue.DeQue<int8_t>();
        LocalTensor<half> cast_local = cast_queue.AllocTensor<half>();
        LocalTensor<float> output_local = output_queue.AllocTensor<float>();

        // TODO: cast more data to speed up.
        Cast(cast_local, input_local, RoundMode::CAST_NONE, QK8_0);
        Cast(output_local, cast_local, RoundMode::CAST_NONE, QK8_0);

        // Only mul need compile by group.
        half scale = scale_gm.GetValue(scale_offset);
        Muls(output_local, output_local, (float)scale, QK8_0);

        input_queue.FreeTensor(input_local);
        cast_queue.FreeTensor(cast_local);
        output_queue.EnQue(output_local);

        copy_out(output_offset);
    }

    __aicore__ inline void calculate() {
        for (int64_t i = ir; i < ir + dr; i++) {
            for (int64_t j = 0; j < group_size_in_row; j++) {
                calculate_group(i, j);
            }
        }
    }

   private:
    int64_t input_ne[4];
    size_t input_stride[4];

    int64_t scale_ne[4];
    size_t scale_stride[4];

    int64_t indices_ne[4];
    size_t indices_stride[4];

    int64_t output_ne[4];
    size_t output_stride[4];

    int64_t ir;
    int64_t dr;

    int64_t group_size_in_row;

    TPipe pipe;
    GlobalTensor<int8_t> input_gm;
    GlobalTensor<half> scale_gm;
    GlobalTensor<int32_t> indices_gm;
    GlobalTensor<float> output_gm;
    TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
    TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
    TQue<QuePosition::VECIN, BUFFER_NUM> cast_queue;
};

template <typename T>
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
    auto gm_ptr = (__gm__ uint8_t *)gm;
    auto ub_ptr = (uint8_t *)(ub);
    for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
        *ub_ptr = *gm_ptr;
    }
}

extern "C" __global__ __aicore__ void ascendc_get_row_q8_0(
    GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
    GM_ADDR input_ne_gm, GM_ADDR indices_ne_gm, GM_ADDR indices_nb_gm,
    GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
    int64_t input_ne_ub[4];
    int64_t indices_ne_ub[4];
    size_t indices_nb_ub[4];
    int64_t output_ne_ub[4];
    size_t output_nb_ub[4];

    copy_to_ub(input_ne_gm, input_ne_ub, 32);
    copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
    copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
    copy_to_ub(output_ne_gm, output_ne_ub, 32);
    copy_to_ub(output_nb_gm, output_nb_ub, 32);

    GET_ROW_Q8_0 op;
    op.init(input_gm, indices_gm, output_gm, input_ne_ub, indices_ne_ub,
            indices_nb_ub, output_ne_ub, output_nb_ub);
    op.calculate();
}