File size: 133,459 Bytes
57e3690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
#include "ggml-cuda.h"
#include "ggml-impl.h"
#include "ggml-backend-impl.h"

#include "ggml-cuda/common.cuh"
#include "ggml-cuda/acc.cuh"
#include "ggml-cuda/arange.cuh"
#include "ggml-cuda/argmax.cuh"
#include "ggml-cuda/argsort.cuh"
#include "ggml-cuda/binbcast.cuh"
#include "ggml-cuda/clamp.cuh"
#include "ggml-cuda/concat.cuh"
#include "ggml-cuda/conv-transpose-1d.cuh"
#include "ggml-cuda/convert.cuh"
#include "ggml-cuda/count-equal.cuh"
#include "ggml-cuda/cpy.cuh"
#include "ggml-cuda/cross-entropy-loss.cuh"
#include "ggml-cuda/diagmask.cuh"
#include "ggml-cuda/dmmv.cuh"
#include "ggml-cuda/fattn.cuh"
#include "ggml-cuda/getrows.cuh"
#include "ggml-cuda/im2col.cuh"
#include "ggml-cuda/mmq.cuh"
#include "ggml-cuda/mmvq.cuh"
#include "ggml-cuda/norm.cuh"
#include "ggml-cuda/opt-step-adamw.cuh"
#include "ggml-cuda/out-prod.cuh"
#include "ggml-cuda/pad.cuh"
#include "ggml-cuda/pool2d.cuh"
#include "ggml-cuda/quantize.cuh"
#include "ggml-cuda/rope.cuh"
#include "ggml-cuda/scale.cuh"
#include "ggml-cuda/softmax.cuh"
#include "ggml-cuda/sum.cuh"
#include "ggml-cuda/sumrows.cuh"
#include "ggml-cuda/tsembd.cuh"
#include "ggml-cuda/unary.cuh"
#include "ggml-cuda/upscale.cuh"
#include "ggml-cuda/rwkv-wkv.cuh"

#include <algorithm>
#include <array>
#include <atomic>
#include <cinttypes>
#include <cstddef>
#include <cstdint>
#include <float.h>
#include <limits>
#include <map>
#include <memory>
#include <mutex>
#include <stdint.h>
#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>
#include <string>
#include <vector>

static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");

[[noreturn]]
void ggml_cuda_error(const char * stmt, const char * func, const char * file, int line, const char * msg) {
    int id = -1; // in case cudaGetDevice fails
    cudaGetDevice(&id);

    GGML_LOG_ERROR(GGML_CUDA_NAME " error: %s\n", msg);
    GGML_LOG_ERROR("  current device: %d, in function %s at %s:%d\n", id, func, file, line);
    GGML_LOG_ERROR("  %s\n", stmt);
    // abort with GGML_ABORT to get a stack trace
    GGML_ABORT(GGML_CUDA_NAME " error");
}

// this is faster on Windows
// probably because the Windows CUDA libraries forget to make this check before invoking the drivers
void ggml_cuda_set_device(int device) {
    int current_device;
    CUDA_CHECK(cudaGetDevice(&current_device));

    if (device == current_device) {
        return;
    }

    CUDA_CHECK(cudaSetDevice(device));
}

int ggml_cuda_get_device() {
    int id;
    CUDA_CHECK(cudaGetDevice(&id));
    return id;
}

static cudaError_t ggml_cuda_device_malloc(void ** ptr, size_t size, int device) {
    ggml_cuda_set_device(device);
#if defined(GGML_USE_HIPBLAS) && defined(GGML_HIP_UMA)
    auto res = hipMallocManaged(ptr, size);
    if (res == hipSuccess) {
        // if error we "need" to know why...
        CUDA_CHECK(hipMemAdvise(*ptr, size, hipMemAdviseSetCoarseGrain, device));
    }
    return res;
#else

#if !defined(GGML_USE_HIPBLAS)
    cudaError_t err;
    if (getenv("GGML_CUDA_ENABLE_UNIFIED_MEMORY") != nullptr)
    {
        err = cudaMallocManaged(ptr, size);
    }
    else
    {
        err = cudaMalloc(ptr, size);
    }
    return err;
#else
    return cudaMalloc(ptr, size);
#endif // !defined(GGML_USE_HIPBLAS)

#endif
}

static ggml_cuda_device_info ggml_cuda_init() {
#ifdef __HIP_PLATFORM_AMD__
    // Workaround for a rocBLAS bug when using multiple graphics cards:
    // https://github.com/ROCmSoftwarePlatform/rocBLAS/issues/1346
    rocblas_initialize();
    CUDA_CHECK(cudaDeviceSynchronize());
#endif

    ggml_cuda_device_info info = {};

    cudaError_t err = cudaGetDeviceCount(&info.device_count);
    if (err != cudaSuccess) {
        GGML_LOG_ERROR("%s: failed to initialize " GGML_CUDA_NAME ": %s\n", __func__, cudaGetErrorString(err));
        return info;
    }

    GGML_ASSERT(info.device_count <= GGML_CUDA_MAX_DEVICES);

    int64_t total_vram = 0;
#ifdef GGML_CUDA_FORCE_MMQ
    GGML_LOG_INFO("%s: GGML_CUDA_FORCE_MMQ:    yes\n", __func__);
#else
    GGML_LOG_INFO("%s: GGML_CUDA_FORCE_MMQ:    no\n", __func__);
#endif // GGML_CUDA_FORCE_MMQ
#ifdef GGML_CUDA_FORCE_CUBLAS
    GGML_LOG_INFO("%s: GGML_CUDA_FORCE_CUBLAS: yes\n", __func__);
#else
    GGML_LOG_INFO("%s: GGML_CUDA_FORCE_CUBLAS: no\n", __func__);
#endif // GGML_CUDA_FORCE_CUBLAS
    GGML_LOG_INFO("%s: found %d " GGML_CUDA_NAME " devices:\n", __func__, info.device_count);
    for (int id = 0; id < info.device_count; ++id) {
        int device_vmm = 0;

#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)
        CUdevice device;
        CU_CHECK(cuDeviceGet(&device, id));
        CU_CHECK(cuDeviceGetAttribute(&device_vmm, CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED, device));

        if (device_vmm) {
            CUmemAllocationProp alloc_prop = {};
            alloc_prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
            alloc_prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
            alloc_prop.location.id = id;
            CU_CHECK(cuMemGetAllocationGranularity(&info.devices[id].vmm_granularity, &alloc_prop, CU_MEM_ALLOC_GRANULARITY_RECOMMENDED));
        }
#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)
        info.devices[id].vmm = !!device_vmm;

        cudaDeviceProp prop;
        CUDA_CHECK(cudaGetDeviceProperties(&prop, id));
        GGML_LOG_INFO("  Device %d: %s, compute capability %d.%d, VMM: %s\n", id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no");

        info.default_tensor_split[id] = total_vram;
        total_vram += prop.totalGlobalMem;

        info.devices[id].nsm   = prop.multiProcessorCount;
        info.devices[id].smpb  = prop.sharedMemPerBlock;
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
        info.devices[id].smpbo = prop.sharedMemPerBlock;
        info.devices[id].cc = 100*prop.major + 10*prop.minor + CC_OFFSET_AMD;
#else
        info.devices[id].smpbo = prop.sharedMemPerBlockOptin;
        info.devices[id].cc = 100*prop.major + 10*prop.minor;
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
    }

    for (int id = 0; id < info.device_count; ++id) {
        info.default_tensor_split[id] /= total_vram;
    }

    // configure logging to stdout
    // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));

    return info;
}

const ggml_cuda_device_info & ggml_cuda_info() {
    static ggml_cuda_device_info info = ggml_cuda_init();
    return info;
}

// #define DEBUG_CUDA_MALLOC

// buffer pool for cuda (legacy)
struct ggml_cuda_pool_leg : public ggml_cuda_pool {
    static const int MAX_BUFFERS = 256;

    int device;
    struct ggml_cuda_buffer {
        void * ptr = nullptr;
        size_t size = 0;
    };

    ggml_cuda_buffer buffer_pool[MAX_BUFFERS] = {};
    size_t pool_size = 0;

    explicit ggml_cuda_pool_leg(int device) :
        device(device) {
    }

    ~ggml_cuda_pool_leg() {
        ggml_cuda_set_device(device);
        for (int i = 0; i < MAX_BUFFERS; ++i) {
            ggml_cuda_buffer & b = buffer_pool[i];
            if (b.ptr != nullptr) {
                CUDA_CHECK(cudaFree(b.ptr));
                pool_size -= b.size;
            }
        }
        GGML_ASSERT(pool_size == 0);
    }

    void * alloc(size_t size, size_t * actual_size) override {
#ifdef DEBUG_CUDA_MALLOC
        int nnz = 0;
        size_t max_size = 0;
#endif
        size_t best_diff = 1ull << 36;
        int ibest = -1;
        for (int i = 0; i < MAX_BUFFERS; ++i) {
            ggml_cuda_buffer& b = buffer_pool[i];
            if (b.ptr != nullptr) {
#ifdef DEBUG_CUDA_MALLOC
                ++nnz;
                if (b.size > max_size) max_size = b.size;
#endif
                if (b.size >= size) {
                    size_t diff = b.size - size;
                    if (diff < best_diff) {
                        best_diff = diff;
                        ibest = i;
                        if (!best_diff) {
                            void * ptr = b.ptr;
                            *actual_size = b.size;
                            b.ptr = nullptr;
                            b.size = 0;
                            return ptr;
                        }
                    }
                }
            }
        }
        if (ibest >= 0) {
            ggml_cuda_buffer& b = buffer_pool[ibest];
            void * ptr = b.ptr;
            *actual_size = b.size;
            b.ptr = nullptr;
            b.size = 0;
            return ptr;
        }
        void * ptr;
        size_t look_ahead_size = (size_t) (1.05 * size);
        look_ahead_size = 256 * ((look_ahead_size + 255)/256);
        ggml_cuda_set_device(device);
        CUDA_CHECK(ggml_cuda_device_malloc(&ptr, look_ahead_size, device));
        *actual_size = look_ahead_size;
        pool_size += look_ahead_size;
#ifdef DEBUG_CUDA_MALLOC
        GGML_LOG_INFO("%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, requested %u MB\n", __func__, device, nnz,
                           (uint32_t)(max_size / 1024 / 1024), (uint32_t)(pool_size / 1024 / 1024), (uint32_t)(size / 1024 / 1024));
#endif
        return ptr;
    }

    void free(void * ptr, size_t size) override {
        for (int i = 0; i < MAX_BUFFERS; ++i) {
            ggml_cuda_buffer& b = buffer_pool[i];
            if (b.ptr == nullptr) {
                b.ptr = ptr;
                b.size = size;
                return;
            }
        }
        GGML_LOG_DEBUG(GGML_CUDA_NAME " buffer pool full, increase MAX_CUDA_BUFFERS\n");
        ggml_cuda_set_device(device);
        CUDA_CHECK(cudaFree(ptr));
        pool_size -= size;
    }
};

// pool with virtual memory
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)
struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
    static const size_t CUDA_POOL_VMM_MAX_SIZE = 1ull << 35; // 32 GB

    int device;
    CUdeviceptr pool_addr = 0;
    size_t pool_used = 0;
    size_t pool_size = 0;
    size_t granularity;

    explicit ggml_cuda_pool_vmm(int device) :
        device(device),
        granularity(ggml_cuda_info().devices[device].vmm_granularity) {
    }

    ~ggml_cuda_pool_vmm() {
        if (pool_addr != 0) {
            CU_CHECK(cuMemUnmap(pool_addr, pool_size));
            CU_CHECK(cuMemAddressFree(pool_addr, CUDA_POOL_VMM_MAX_SIZE));
        }
    }

    void * alloc(size_t size, size_t * actual_size) override {
        // round up the allocation size to the alignment to ensure that all allocations are aligned for all data types
        const size_t alignment = 128;
        size = alignment * ((size + alignment - 1) / alignment);

        size_t avail = pool_size - pool_used;

        if (size > avail) {
            // round up to the next multiple of the granularity
            size_t reserve_size = size - avail;
            reserve_size = granularity * ((reserve_size + granularity - 1) / granularity);

            GGML_ASSERT(pool_size + reserve_size <= CUDA_POOL_VMM_MAX_SIZE);

            // allocate more physical memory
            CUmemAllocationProp prop = {};
            prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
            prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
            prop.location.id = device;
            CUmemGenericAllocationHandle handle;
            CU_CHECK(cuMemCreate(&handle, reserve_size, &prop, 0));

            // reserve virtual address space (if not already reserved)
            if (pool_addr == 0) {
                CU_CHECK(cuMemAddressReserve(&pool_addr, CUDA_POOL_VMM_MAX_SIZE, 0, 0, 0));
            }

            // map at the end of the pool
            CU_CHECK(cuMemMap(pool_addr + pool_size, reserve_size, 0, handle, 0));

            // the memory allocation handle is no longer needed after mapping
            CU_CHECK(cuMemRelease(handle));

            // set access
            CUmemAccessDesc access = {};
            access.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
            access.location.id = device;
            access.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;
            CU_CHECK(cuMemSetAccess(pool_addr + pool_size, reserve_size, &access, 1));

            // add to the pool
            pool_size += reserve_size;

            //printf("cuda pool[%d]: size increased to %llu MB (reserved %llu MB)\n",
            //       device, (unsigned long long) (pool_size/1024/1024),
            //       (unsigned long long) (reserve_size/1024/1024));
        }

        GGML_ASSERT(pool_addr != 0);

        void * ptr = (void *) (pool_addr + pool_used);
        *actual_size = size;
        pool_used += size;

#ifdef DEBUG_CUDA_MALLOC
        printf("cuda pool[%d]: allocated %llu bytes at %llx\n", device, (unsigned long long) size, ptr);
#endif

        return ptr;
    }

    void free(void * ptr, size_t size) override {
#ifdef DEBUG_CUDA_MALLOC
        printf("cuda pool[%d]: freed %llu bytes at %llx\n", device, (unsigned long long) size, ptr);
#endif

        pool_used -= size;

        // all deallocations must be in reverse order of the allocations
        GGML_ASSERT(ptr == (void *) (pool_addr + pool_used));
    }
};
#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)

std::unique_ptr<ggml_cuda_pool> ggml_backend_cuda_context::new_pool_for_device(int device) {
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)
    if (ggml_cuda_info().devices[device].vmm) {
        return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_vmm(device));
    }
#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)
    return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_leg(device));
}

// cuda buffer

struct ggml_backend_cuda_buffer_context {
    int device;
    void * dev_ptr = nullptr;
    std::string name;

    ggml_backend_cuda_buffer_context(int device, void * dev_ptr) :
        device(device), dev_ptr(dev_ptr),
        name(GGML_CUDA_NAME + std::to_string(device)) {
    }

    ~ggml_backend_cuda_buffer_context() {
        CUDA_CHECK(cudaFree(dev_ptr));
    }
};

static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) {
    ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
    delete ctx;
}

static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) {
    return buffer->iface.free_buffer == ggml_backend_cuda_buffer_free_buffer;
}

static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) {
    ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
    return ctx->dev_ptr;
}

static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
    ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;

    if (tensor->view_src != NULL) {
        assert(tensor->view_src->buffer->buft == buffer->buft);
        return;
    }

    if (ggml_is_quantized(tensor->type) && tensor->view_src == nullptr && ggml_backend_buffer_get_usage(buffer) != GGML_BACKEND_BUFFER_USAGE_COMPUTE) {
        // initialize padding to 0 to avoid possible NaN values
        size_t original_size = ggml_nbytes(tensor);
        size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);

        if (padded_size > original_size) {
            ggml_cuda_set_device(ctx->device);
            CUDA_CHECK(cudaMemset((char *)tensor->data + original_size, 0, padded_size - original_size));
        }
    }
}

static void ggml_backend_cuda_buffer_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
    ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;

    ggml_cuda_set_device(ctx->device);
    CUDA_CHECK(cudaMemsetAsync((char *)tensor->data + offset, value, size, cudaStreamPerThread));
    CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
}

static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
    ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;

    ggml_cuda_set_device(ctx->device);
    CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cudaStreamPerThread));
    CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
}

static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
    ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;

    ggml_cuda_set_device(ctx->device);
    CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cudaStreamPerThread));
    CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
}

static bool ggml_backend_cuda_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
    if (ggml_backend_buffer_is_cuda(src->buffer)) {
        ggml_backend_cuda_buffer_context * src_ctx = (ggml_backend_cuda_buffer_context *)src->buffer->context;
        ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *)dst->buffer->context;
        if (src_ctx->device == dst_ctx->device) {
            CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(src), cudaMemcpyDeviceToDevice, cudaStreamPerThread));
        } else {
#ifdef GGML_CUDA_NO_PEER_COPY
            return false;
#else
            CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, dst_ctx->device, src->data, src_ctx->device, ggml_nbytes(src), cudaStreamPerThread));
#endif
        }
        CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
        return true;
    }
    return false;

    GGML_UNUSED(buffer);
}

static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
    ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;

    ggml_cuda_set_device(ctx->device);
    CUDA_CHECK(cudaDeviceSynchronize());
    CUDA_CHECK(cudaMemset(ctx->dev_ptr, value, buffer->size));
    CUDA_CHECK(cudaDeviceSynchronize());
}

static const ggml_backend_buffer_i ggml_backend_cuda_buffer_interface = {
    /* .free_buffer     = */ ggml_backend_cuda_buffer_free_buffer,
    /* .get_base        = */ ggml_backend_cuda_buffer_get_base,
    /* .init_tensor     = */ ggml_backend_cuda_buffer_init_tensor,
    /* .memset_tensor   = */ ggml_backend_cuda_buffer_memset_tensor,
    /* .set_tensor      = */ ggml_backend_cuda_buffer_set_tensor,
    /* .get_tensor      = */ ggml_backend_cuda_buffer_get_tensor,
    /* .cpy_tensor      = */ ggml_backend_cuda_buffer_cpy_tensor,
    /* .clear           = */ ggml_backend_cuda_buffer_clear,
    /* .reset           = */ NULL,
};

// cuda buffer type
struct ggml_backend_cuda_buffer_type_context {
    int device;
    std::string name;
};

static const char * ggml_backend_cuda_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
    ggml_backend_cuda_buffer_type_context * ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;

    return ctx->name.c_str();
}

static bool ggml_backend_buft_is_cuda(ggml_backend_buffer_type_t buft) {
    return buft->iface.get_name == ggml_backend_cuda_buffer_type_get_name;
}

static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
    ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;

    ggml_cuda_set_device(buft_ctx->device);

    void * dev_ptr;
    cudaError_t err = ggml_cuda_device_malloc(&dev_ptr, size, buft_ctx->device);
    if (err != cudaSuccess) {
        // clear the error
        cudaGetLastError();
        GGML_LOG_ERROR("%s: allocating %.2f MiB on device %d: cudaMalloc failed: %s\n", __func__, size / 1024.0 / 1024.0, buft_ctx->device, cudaGetErrorString(err));
        return nullptr;
    }

    ggml_backend_cuda_buffer_context * ctx = new ggml_backend_cuda_buffer_context(buft_ctx->device, dev_ptr);

    return ggml_backend_buffer_init(buft, ggml_backend_cuda_buffer_interface, ctx, size);
}

static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
    return 128;

    GGML_UNUSED(buft);
}

static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
    size_t size = ggml_nbytes(tensor);
    int64_t ne0 = tensor->ne[0];

    if (ggml_is_quantized(tensor->type)) {
        if (ne0 % MATRIX_ROW_PADDING != 0) {
            size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
        }
    }

    return size;

    GGML_UNUSED(buft);
}

static const ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = {
    /* .get_name         = */ ggml_backend_cuda_buffer_type_get_name,
    /* .alloc_buffer     = */ ggml_backend_cuda_buffer_type_alloc_buffer,
    /* .get_alignment    = */ ggml_backend_cuda_buffer_type_get_alignment,
    /* .get_max_size     = */ NULL, // defaults to SIZE_MAX
    /* .get_alloc_size   = */ ggml_backend_cuda_buffer_type_get_alloc_size,
    /* .is_host          = */ NULL,
};

ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
    static std::mutex mutex;
    std::lock_guard<std::mutex> lock(mutex);

    if (device >= ggml_backend_cuda_get_device_count()) {
        return nullptr;
    }

    static ggml_backend_buffer_type ggml_backend_cuda_buffer_types[GGML_CUDA_MAX_DEVICES];

    static bool ggml_backend_cuda_buffer_type_initialized = false;

    if (!ggml_backend_cuda_buffer_type_initialized) {
        for (int i = 0; i < ggml_backend_cuda_get_device_count(); i++) {
            ggml_backend_cuda_buffer_types[i] = {
                /* .iface    = */ ggml_backend_cuda_buffer_type_interface,
                /* .device   = */ ggml_backend_reg_dev_get(ggml_backend_cuda_reg(), i),
                /* .context  = */ new ggml_backend_cuda_buffer_type_context{i, GGML_CUDA_NAME + std::to_string(i)},
            };
        }
        ggml_backend_cuda_buffer_type_initialized = true;
    }

    return &ggml_backend_cuda_buffer_types[device];
}

// cuda split buffer

static int64_t get_row_rounding(const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split) {
    int64_t row_rounding = 0;
    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
        if (tensor_split[id] >= (id + 1 < ggml_backend_cuda_get_device_count() ? tensor_split[id + 1] : 1.0f)) {
            continue;
        }

        const int cc = ggml_cuda_info().devices[id].cc;
        row_rounding = std::max(row_rounding, (int64_t)get_mmq_y_host(cc));
    }
    return row_rounding;
}

static void get_row_split(int64_t * row_low, int64_t * row_high, const ggml_tensor * tensor, const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split, int id) {
    const int64_t nrows = ggml_nrows(tensor);
    const int64_t rounding = get_row_rounding(tensor_split);

    *row_low = id == 0 ? 0 : nrows*tensor_split[id];
    *row_low -= *row_low % rounding;

    if (id == ggml_backend_cuda_get_device_count() - 1) {
        *row_high = nrows;
    } else {
        *row_high = nrows*tensor_split[id + 1];
        *row_high -= *row_high % rounding;
    }
}

static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
    static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");

    return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]);
}

struct ggml_backend_cuda_split_buffer_type_context {
    int main_device;
    std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
    std::string name;
};

struct ggml_backend_cuda_split_buffer_context {
    ~ggml_backend_cuda_split_buffer_context() {
        for (ggml_tensor_extra_gpu * extra : tensor_extras) {
            for (int id = 0; id < GGML_CUDA_MAX_DEVICES; ++id) {
                for (int64_t is = 0; is < GGML_CUDA_MAX_STREAMS; ++is) {
                    if (extra->events[id][is] != nullptr) {
                        CUDA_CHECK(cudaEventDestroy(extra->events[id][is]));
                    }
                }
                if (extra->data_device[id] != nullptr) {
                    CUDA_CHECK(cudaFree(extra->data_device[id]));
                }
            }
            delete extra;
        }
    }

    std::vector<ggml_tensor_extra_gpu *> tensor_extras;
};


static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
    ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
    delete ctx;
}

static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) {
    // the pointers are stored in the tensor extras, this is just a dummy address and never dereferenced
    return (void *)0x1000;

    GGML_UNUSED(buffer);
}

static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
    GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported

    ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
    ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;

    const int64_t ne0 = tensor->ne[0];

    ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu{};
    ctx->tensor_extras.push_back(extra);

    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
        int64_t row_low, row_high;
        get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);

        int64_t nrows_split = row_high - row_low;
        if (nrows_split == 0) {
            continue;
        }

        size_t size = ggml_nbytes_split(tensor, nrows_split);
        const size_t original_size = size;

        // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
        if (ne0 % MATRIX_ROW_PADDING != 0) {
            size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
        }

        // FIXME: do not crash if cudaMalloc fails
        // currently, init_tensor cannot fail, it needs to be fixed in ggml-backend first
        ggml_cuda_set_device(id);
        char * buf;
        CUDA_CHECK(ggml_cuda_device_malloc((void**)&buf, size, id));

        // set padding to 0 to avoid possible NaN values
        if (size > original_size) {
            CUDA_CHECK(cudaMemset(buf + original_size, 0, size - original_size));
        }

        extra->data_device[id] = buf;

        for (int64_t is = 0; is < GGML_CUDA_MAX_STREAMS; ++is) {
            CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id][is], cudaEventDisableTiming));
        }
    }
    tensor->extra = extra;
}

static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
    // split tensors must always be set in their entirety at once
    GGML_ASSERT(offset == 0);
    GGML_ASSERT(size == ggml_nbytes(tensor));

    ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;

    const int64_t ne0 = tensor->ne[0];
    const size_t nb1 = tensor->nb[1];
    ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;

    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
        int64_t row_low, row_high;
        get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);

        int64_t nrows_split = row_high - row_low;
        if (nrows_split == 0) {
            continue;
        }

        const size_t offset_split = row_low*nb1;
        size_t size = ggml_nbytes_split(tensor, nrows_split);
        const size_t original_size = size;

        // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
        if (ne0 % MATRIX_ROW_PADDING != 0) {
            size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
        }

        const char * buf_host = (const char *)data + offset_split;
        CUDA_CHECK(cudaMemcpyAsync(extra->data_device[id], buf_host, original_size, cudaMemcpyHostToDevice, cudaStreamPerThread));
    }

    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
        CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
    }
}

static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
    // split tensors must always be set in their entirety at once
    GGML_ASSERT(offset == 0);
    GGML_ASSERT(size == ggml_nbytes(tensor));

    ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;

    const int64_t ne0 = tensor->ne[0];
    const size_t nb1 = tensor->nb[1];
    ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;

    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
        int64_t row_low, row_high;
        get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);

        int64_t nrows_split = row_high - row_low;
        if (nrows_split == 0) {
            continue;
        }

        const size_t offset_split = row_low*nb1;
        size_t size = ggml_nbytes_split(tensor, nrows_split);
        const size_t original_size = size;

        // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
        if (ne0 % MATRIX_ROW_PADDING != 0) {
            size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
        }

        char * buf_host = (char *)data + offset_split;
        CUDA_CHECK(cudaMemcpyAsync(buf_host, extra->data_device[id], original_size, cudaMemcpyDeviceToHost, cudaStreamPerThread));
    }

    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
        CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
    }
}

static void ggml_backend_cuda_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
    GGML_UNUSED(buffer);
    GGML_UNUSED(value);
}

static const ggml_backend_buffer_i ggml_backend_cuda_split_buffer_interface = {
    /* .free_buffer     = */ ggml_backend_cuda_split_buffer_free_buffer,
    /* .get_base        = */ ggml_backend_cuda_split_buffer_get_base,
    /* .init_tensor     = */ ggml_backend_cuda_split_buffer_init_tensor,
    /* .memset_tensor   = */ NULL,
    /* .set_tensor      = */ ggml_backend_cuda_split_buffer_set_tensor,
    /* .get_tensor      = */ ggml_backend_cuda_split_buffer_get_tensor,
    /* .cpy_tensor      = */ NULL,
    /* .clear           = */ ggml_backend_cuda_split_buffer_clear,
    /* .reset           = */ NULL,
};

// cuda split buffer type

static const char * ggml_backend_cuda_split_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
    ggml_backend_cuda_split_buffer_type_context * ctx = (ggml_backend_cuda_split_buffer_type_context *)buft->context;

    return ctx->name.c_str();
}

static bool ggml_backend_buft_is_cuda_split(ggml_backend_buffer_type_t buft) {
    return buft->iface.get_name == ggml_backend_cuda_split_buffer_type_get_name;
}

static ggml_backend_buffer_t ggml_backend_cuda_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
    // since we don't know the exact split after rounding, we cannot allocate the device buffers at this point
    // instead, we allocate them for each tensor separately in init_tensor
    // however, the size still represents the maximum cumulative size of all the device buffers after the tensors are allocated,
    // as returned by get_alloc_size. this limit is enforced during tensor allocation by ggml-alloc, so it must be correct.
    ggml_backend_cuda_split_buffer_context * ctx = new ggml_backend_cuda_split_buffer_context();

    return ggml_backend_buffer_init(buft, ggml_backend_cuda_split_buffer_interface, ctx, size);
}

static size_t ggml_backend_cuda_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
    return 128;

    GGML_UNUSED(buft);
}

static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
    ggml_backend_cuda_split_buffer_type_context * ctx = (ggml_backend_cuda_split_buffer_type_context *)buft->context;

    size_t total_size = 0;

    const int64_t ne0 = tensor->ne[0];

    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
        int64_t row_low, row_high;
        get_row_split(&row_low, &row_high, tensor, ctx->tensor_split, id);

        int64_t nrows_split = row_high - row_low;
        if (nrows_split == 0) {
            continue;
        }

        total_size += ggml_nbytes_split(tensor, nrows_split);

        // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
        if (ne0 % MATRIX_ROW_PADDING != 0) {
            total_size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
        }
    }

    return total_size;
}

static bool ggml_backend_cuda_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
    return false;

    GGML_UNUSED(buft);
}

static const ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_interface = {
    /* .get_name         = */ ggml_backend_cuda_split_buffer_type_get_name,
    /* .alloc_buffer     = */ ggml_backend_cuda_split_buffer_type_alloc_buffer,
    /* .get_alignment    = */ ggml_backend_cuda_split_buffer_type_get_alignment,
    /* .get_max_size     = */ NULL, // defaults to SIZE_MAX
    /* .get_alloc_size   = */ ggml_backend_cuda_split_buffer_type_get_alloc_size,
    /* .is_host          = */ ggml_backend_cuda_split_buffer_type_is_host,
};

ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(int main_device, const float * tensor_split) {
    static std::mutex mutex;
    std::lock_guard<std::mutex> lock(mutex);

    static std::map<std::pair<int, std::array<float, GGML_CUDA_MAX_DEVICES>>, struct ggml_backend_buffer_type> buft_map;

    std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split_arr = {};

    bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + GGML_CUDA_MAX_DEVICES, [](float x) { return x == 0.0f; });
    if (all_zero) {
        tensor_split_arr = ggml_cuda_info().default_tensor_split;
    } else {
        float split_sum = 0.0f;
        for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
            tensor_split_arr[i] = split_sum;
            split_sum += tensor_split[i];
        }
        for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
            tensor_split_arr[i] /= split_sum;
        }
    }

    auto it = buft_map.find({main_device, tensor_split_arr});
    if (it != buft_map.end()) {
        return &it->second;
    }
    auto * ctx = new ggml_backend_cuda_split_buffer_type_context{
        main_device,
        tensor_split_arr,
        GGML_CUDA_NAME + std::to_string(main_device) + "_Split",
    };

    struct ggml_backend_buffer_type buft {
        /* .iface   = */ ggml_backend_cuda_split_buffer_type_interface,
        /* .device  = */ ggml_backend_reg_dev_get(ggml_backend_cuda_reg(), main_device),
        /* .context = */ ctx,
    };

    auto result = buft_map.emplace(std::make_pair(main_device, tensor_split_arr), buft);
    return &result.first->second;
}

// host buffer type

static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
    return GGML_CUDA_NAME "_Host";

    GGML_UNUSED(buft);
}

static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
    CUDA_CHECK(cudaFreeHost(buffer->context));
}

static void * ggml_cuda_host_malloc(size_t size) {
    if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
        return nullptr;
    }

    void * ptr = nullptr;
    cudaError_t err = cudaMallocHost((void **) &ptr, size);
    if (err != cudaSuccess) {
        // clear the error
        cudaGetLastError();
        GGML_LOG_DEBUG("%s: failed to allocate %.2f MiB of pinned memory: %s\n", __func__,
                           size / 1024.0 / 1024.0, cudaGetErrorString(err));
        return nullptr;
    }

    return ptr;
}

static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
    void * ptr = ggml_cuda_host_malloc(size);

    if (ptr == nullptr) {
        // fallback to cpu buffer
        return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
    }

    ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
    buffer->buft = buft;
    buffer->iface.free_buffer = ggml_backend_cuda_host_buffer_free_buffer;

    return buffer;
}

ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() {
    static struct ggml_backend_buffer_type ggml_backend_cuda_buffer_type_host = {
        /* .iface    = */ {
            /* .get_name         = */ ggml_backend_cuda_host_buffer_type_name,
            /* .alloc_buffer     = */ ggml_backend_cuda_host_buffer_type_alloc_buffer,
            /* .get_alignment    = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
            /* .get_max_size     = */ NULL, // defaults to SIZE_MAX
            /* .get_alloc_size   = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
            /* .is_host          = */ ggml_backend_cpu_buffer_type()->iface.is_host,
        },
        /* .device   = */ ggml_backend_reg_dev_get(ggml_backend_cuda_reg(), 0),
        /* .context  = */ nullptr,
    };

    return &ggml_backend_cuda_buffer_type_host;
}

//static bool ggml_backend_buffer_is_cuda_host(ggml_backend_buffer_t buffer) {
//    return buffer->buft->iface.get_name == ggml_backend_cuda_host_buffer_type_name;
//}

/// kernels

typedef void (*ggml_cuda_op_mul_mat_t)(
    ggml_backend_cuda_context & ctx,
    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
    const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
    const int64_t src1_padded_row_size, cudaStream_t stream);

#ifndef GGML_CUDA_PEER_MAX_BATCH_SIZE
#define GGML_CUDA_PEER_MAX_BATCH_SIZE 128
#endif // GGML_CUDA_PEER_MAX_BATCH_SIZE

#define MUL_MAT_SRC1_COL_STRIDE 128

static __global__ void mul_mat_p021_f16_f32(
    const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
    const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y) {

    const half * x = (const half *) vx;

    const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
    const int channel = blockDim.z*blockIdx.z + threadIdx.z;
    const int channel_x = channel / (nchannels_y / nchannels_x);

    const int nrows_y = ncols_x;
    const int nrows_dst = nrows_x;
    const int row_dst = row_x;

    float tmp = 0.0f;

    for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
        const int col_x = col_x0 + threadIdx.x;

        if (col_x >= ncols_x) {
            break;
        }

        // x is transposed and permuted
        const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
        const float xi = __half2float(x[ix]);

        const int row_y = col_x;

        // y is not transposed but permuted
        const int iy = channel*nrows_y + row_y;

        tmp += xi * y[iy];
    }

    // dst is not transposed and not permuted
    const int idst = channel*nrows_dst + row_dst;

    // sum up partial sums and write back result
    tmp = warp_reduce_sum(tmp);

    if (threadIdx.x == 0) {
        dst[idst] = tmp;
    }
}

static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
    const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
    const int row_stride_x, const int channel_stride_x, const int channel_x_divisor) {

    const half * x = (const half *) vx;

    const int row_x     = blockDim.y*blockIdx.y + threadIdx.y;
    const int channel   = blockDim.z*blockIdx.z + threadIdx.z;
    const int channel_x = channel / channel_x_divisor;

    const int nrows_y   = ncols_x;
    const int nrows_dst = nrows_x;
    const int row_dst   = row_x;

    const int idst = channel*nrows_dst + row_dst;

    float tmp = 0.0f;

    for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
        const int col_x = col_x0 + threadIdx.x;

        if (col_x >= ncols_x) {
            break;
        }

        const int row_y = col_x;

        const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
        const int iy = channel*nrows_y + row_y;

        const float xi = __half2float(x[ix]);

        tmp += xi * y[iy];
    }

    // sum up partial sums and write back result
    tmp = warp_reduce_sum(tmp);

    if (threadIdx.x == 0) {
        dst[idst] = tmp;
    }
}

static void ggml_mul_mat_p021_f16_f32_cuda(
    const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x,
    const int nchannels_x, const int nchannels_y, cudaStream_t stream) {

    const dim3 block_nums(1, nrows_x, nchannels_y);
    const dim3 block_dims(WARP_SIZE, 1, 1);
    mul_mat_p021_f16_f32<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols_x, nrows_x, nchannels_x, nchannels_y);
}

static void ggml_mul_mat_vec_nc_f16_f32_cuda(
    const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x,
    const int nchannels_x, const int nchannels_y, const int channel_stride_x, cudaStream_t stream) {

    const dim3 block_nums(1, nrows_x, nchannels_y);
    const dim3 block_dims(WARP_SIZE, 1, 1);
    mul_mat_vec_nc_f16_f32<<<block_nums, block_dims, 0, stream>>>
        (vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x, nchannels_y/nchannels_x);
}

static cudaError_t ggml_cuda_cpy_tensor_2d(
    void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) {

    GGML_ASSERT(ggml_backend_buffer_is_cuda(src->buffer));
    const char * src_ptr = (const char *) src->data;
    char       * dst_ptr = (char       *) dst;

    const int64_t ne0 = src->ne[0];
    const int64_t nb0 = src->nb[0];
    const int64_t nb1 = src->nb[1];
    const int64_t nb2 = src->nb[2];
    const int64_t nb3 = src->nb[3];
    const enum ggml_type type = src->type;
    const int64_t ts = ggml_type_size(type);
    const int64_t bs = ggml_blck_size(type);
    const int64_t i1_diff = i1_high - i1_low;

    const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
    if (nb0 == ts && nb1 == ts*ne0/bs) {
        return cudaMemcpyAsync(dst_ptr, x, i1_diff*nb1, cudaMemcpyDeviceToDevice, stream);
    } else if (nb0 == ts) {
        return cudaMemcpy2DAsync(dst_ptr, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, cudaMemcpyDeviceToDevice, stream);
    } else {
        for (int64_t i1 = 0; i1 < i1_diff; i1++) {
            const void * rx = (const void *) ((const char *) x + i1*nb1);
            void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
            // pretend the row is a matrix with cols=1
            cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyDeviceToDevice, stream);
            if (r != cudaSuccess) {
                return r;
            }
        }
        return cudaSuccess;
    }
}

static void ggml_cuda_op_mul_mat_cublas(
    ggml_backend_cuda_context & ctx,
    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
    const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
    const int64_t src1_padded_row_size, cudaStream_t stream) {

    GGML_ASSERT(src0_dd_i  != nullptr);
    GGML_ASSERT(src1_ddf_i != nullptr);
    GGML_ASSERT(dst_dd_i   != nullptr);

    const int64_t ne00 = src0->ne[0];
    const int64_t ne10 = src1->ne[0];

    const int64_t ne0 = dst->ne[0];

    const int64_t row_diff = row_high - row_low;

    int id = ggml_cuda_get_device();

    // the main device has a larger memory buffer to hold the results from all GPUs
    // ldc == nrows of the matrix that cuBLAS writes into
    int64_t ldc = id == ctx.device ? ne0 : row_diff;

    const int compute_capability = ggml_cuda_info().devices[id].cc;

    if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
        // convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
        ggml_cuda_pool_alloc<half> src0_as_f16(ctx.pool(id));
        if (src0->type != GGML_TYPE_F16) {
            const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src0->type);
            GGML_ASSERT(to_fp16_cuda != nullptr);
            size_t ne = row_diff*ne00;
            src0_as_f16.alloc(ne);
            to_fp16_cuda(src0_dd_i, src0_as_f16.get(), ne, stream);
        }
        const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_dd_i : src0_as_f16.get();

        ggml_cuda_pool_alloc<half> src1_as_f16(ctx.pool(id));
        if (src1->type != GGML_TYPE_F16) {
            const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
            GGML_ASSERT(to_fp16_cuda != nullptr);
            size_t ne = src1_ncols*ne10;
            src1_as_f16.alloc(ne);
            to_fp16_cuda(src1_ddf_i, src1_as_f16.get(), ne, stream);
        }
        const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16.get();
        ggml_cuda_pool_alloc<half> dst_f16(ctx.pool(id), row_diff*src1_ncols);

        const half alpha_f16 = 1.0f;
        const half beta_f16 = 0.0f;

        CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
        CUBLAS_CHECK(
            cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
                    row_diff, src1_ncols, ne10,
                    &alpha_f16, src0_ptr,       CUDA_R_16F, ne00,
                                src1_ptr,       CUDA_R_16F, ne10,
                    &beta_f16,   dst_f16.get(), CUDA_R_16F, ldc,
                    CUBLAS_COMPUTE_16F,
                    CUBLAS_GEMM_DEFAULT_TENSOR_OP));

        const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
        to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
    } else {
        ggml_cuda_pool_alloc<float> src0_ddq_as_f32(ctx.pool(id));
        ggml_cuda_pool_alloc<float> src1_ddq_as_f32(ctx.pool(id));

        if (src0->type != GGML_TYPE_F32) {
            const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
            GGML_ASSERT(to_fp32_cuda != nullptr);
            src0_ddq_as_f32.alloc(row_diff*ne00);
            to_fp32_cuda(src0_dd_i, src0_ddq_as_f32.get(), row_diff*ne00, stream);
        }
        if (src1->type != GGML_TYPE_F32) {
            const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src1->type);
            GGML_ASSERT(to_fp32_cuda != nullptr);
            src1_ddq_as_f32.alloc(src1_ncols*ne10);
            to_fp32_cuda(src1_ddf_i, src1_ddq_as_f32.get(), src1_ncols*ne10, stream);
        }

        const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get();
        const float * src1_ddf1_i = src1->type == GGML_TYPE_F32 ? (const float *) src1_ddf_i : src1_ddq_as_f32.get();

        const float alpha = 1.0f;
        const float beta = 0.0f;

        CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
        CUBLAS_CHECK(
            cublasSgemm(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
                    row_diff, src1_ncols, ne10,
                    &alpha, src0_ddf_i,  ne00,
                            src1_ddf1_i, ne10,
                    &beta,  dst_dd_i,    ldc));
    }

    GGML_UNUSED(dst);
    GGML_UNUSED(src1_ddq_i);
    GGML_UNUSED(src1_padded_row_size);
}

static void ggml_cuda_set_peer_access(const int n_tokens, int main_device) {
    static bool peer_access_enabled = false;

    const bool enable_peer_access = n_tokens <= GGML_CUDA_PEER_MAX_BATCH_SIZE;

    if (peer_access_enabled == enable_peer_access) {
        return;
    }

#ifdef NDEBUG
    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
        ggml_cuda_set_device(id);
        CUDA_CHECK(cudaDeviceSynchronize());
    }

    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
        ggml_cuda_set_device(id);

        for (int id_other = 0; id_other < ggml_backend_cuda_get_device_count(); ++id_other) {
            if (id == id_other) {
                continue;
            }
            if (id != main_device && id_other != main_device) {
                continue;
            }

            int can_access_peer;
            CUDA_CHECK(cudaDeviceCanAccessPeer(&can_access_peer, id, id_other));
            if (can_access_peer) {
                if (enable_peer_access) {
                    cudaError_t err = cudaDeviceEnablePeerAccess(id_other, 0);
                    if (err != cudaErrorPeerAccessAlreadyEnabled) {
                        CUDA_CHECK(err);
                    } else {
                        // reset the error
                        cudaGetLastError();
                    }
                } else {
                    cudaError_t err = cudaDeviceDisablePeerAccess(id_other);
                    if (err != cudaErrorPeerAccessNotEnabled) {
                        CUDA_CHECK(err);
                    } else {
                        // reset the error
                        cudaGetLastError();
                    }
                }
            }
        }
    }

    ggml_cuda_set_device(main_device);
#endif // NDEBUG

    peer_access_enabled = enable_peer_access;

    GGML_UNUSED(main_device);
}

static cudaError_t ggml_cuda_Memcpy2DPeerAsync(
    void * dst, int dstDevice, size_t dpitch, void * src, int srcDevice, size_t spitch, size_t width, size_t height, cudaStream_t stream) {

#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA)
    // cudaMemcpy2DAsync may fail with copies between vmm pools of different devices
    cudaMemcpy3DPeerParms p = {};
    p.dstDevice = dstDevice;
    p.dstPtr = make_cudaPitchedPtr(dst, dpitch, dpitch, height);
    p.srcDevice = srcDevice;
    p.srcPtr = make_cudaPitchedPtr(src, spitch, spitch, height);
    p.extent = make_cudaExtent(width, height, 1);
    return cudaMemcpy3DPeerAsync(&p, stream);
#else
    // HIP does not support cudaMemcpy3DPeerAsync or vmm pools
    GGML_UNUSED(dstDevice);
    GGML_UNUSED(srcDevice);
    return cudaMemcpy2DAsync(dst, dpitch, src, spitch, width, height, cudaMemcpyDeviceToDevice, stream);
#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA)
}

static void ggml_cuda_op_mul_mat(
    ggml_backend_cuda_context & ctx,
    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_cuda_op_mul_mat_t op,
    quantize_cuda_t quantize_src1) {

    const int64_t ne00 = src0->ne[0];
    const int64_t ne01 = src0->ne[1];
    const int64_t ne02 = src0->ne[2];
    const int64_t ne03 = src0->ne[3];

    const int64_t ne10 = src1->ne[0];
    const int64_t ne11 = src1->ne[1];
    const int64_t ne12 = src1->ne[2];
    const int64_t ne13 = src1->ne[3];
    const int64_t nrows1 = ggml_nrows(src1);

    GGML_ASSERT(ne03 == ne13);

    const int64_t ne0 = dst->ne[0];
    const int64_t ne1 = dst->ne[1];

    const int64_t nb2 = dst->nb[2];
    const int64_t nb3 = dst->nb[3];

    GGML_ASSERT(ggml_backend_buffer_is_cuda(dst->buffer));
    GGML_ASSERT(ggml_backend_buffer_is_cuda(src1->buffer));
    ggml_backend_cuda_buffer_context * src1_ctx = (ggml_backend_cuda_buffer_context *) src1->buffer->context;
    ggml_backend_cuda_buffer_context * dst_ctx  = (ggml_backend_cuda_buffer_context *) dst->buffer->context;

    GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1));

    GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0);

    const int64_t i02_divisor = ne12 / ne02;

    const size_t src0_ts = ggml_type_size(src0->type);
    const size_t src0_bs = ggml_blck_size(src0->type);
    const size_t q8_1_ts = sizeof(block_q8_1);
    const size_t q8_1_bs = QK8_1;

    const bool src0_is_contiguous = ggml_is_contiguous(src0);
    const bool src1_is_contiguous = ggml_is_contiguous(src1);

    const int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);

    const bool split = ggml_backend_buft_is_cuda_split(src0->buffer->buft);
    GGML_ASSERT(!(split && ne02 > 1));
    GGML_ASSERT(!(split && ne03 > 1));
    GGML_ASSERT(!(split && ne02 < ne12));

    ggml_tensor_extra_gpu * src0_extra = split ? (ggml_tensor_extra_gpu *) src0->extra : nullptr;


    std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
    if (split) {
        ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
        tensor_split = buft_ctx->tensor_split;
    }

    struct dev_data {
        int cc;

        ggml_cuda_pool_alloc<char>   src0_dd_alloc;
        ggml_cuda_pool_alloc<float> src1_ddf_alloc;
        ggml_cuda_pool_alloc<char>  src1_ddq_alloc;
        ggml_cuda_pool_alloc<float>   dst_dd_alloc;

        char  *  src0_dd = nullptr;
        float * src1_ddf = nullptr; // float
        char  * src1_ddq = nullptr; // q8_1
        float *   dst_dd = nullptr;

        int64_t  row_low;
        int64_t row_high;
    };

    dev_data dev[GGML_CUDA_MAX_DEVICES];

    int used_devices = 0;

    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
        dev[id].cc = ggml_cuda_info().devices[id].cc;

        // by default, use all rows
        dev[id].row_low  = 0;
        dev[id].row_high = ne01;

        // for multi GPU, get the row boundaries from tensor split
        // and round to mul_mat_q tile sizes
        if (split) {
            const int64_t rounding = get_row_rounding(tensor_split);

            if (id != 0) {
                dev[id].row_low  = ne01*tensor_split[id];
                if (dev[id].row_low < ne01) {
                    dev[id].row_low -= dev[id].row_low % rounding;
                }
            }

            if (id != ggml_backend_cuda_get_device_count() - 1) {
                dev[id].row_high  = ne01*tensor_split[id + 1];
                if (dev[id].row_high < ne01) {
                    dev[id].row_high -= dev[id].row_high % rounding;
                }
            }
        }
    }

    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
        if ((!split && id != ctx.device) || dev[id].row_low == dev[id].row_high) {
            continue;
        }

        used_devices++;

        const bool src1_on_device = id == src1_ctx->device;
        const bool  dst_on_device = id == dst_ctx->device;

        ggml_cuda_set_device(id);
        cudaStream_t stream = ctx.stream(id, 0);

        if (src0_is_contiguous) {
            dev[id].src0_dd = split ? (char *) src0_extra->data_device[id] : (char *) src0->data;
        } else {
            // If src0 is not contiguous it will be copied to a temporary buffer.
            // This buffer needs to be cleared entirely because multiple regions will function as padding.
            const size_t nbytes_data    = ggml_nbytes(src0);
            const size_t nbytes_padding = ggml_row_size(src0->type, MATRIX_ROW_PADDING - ne00 % MATRIX_ROW_PADDING);
            dev[id].src0_dd = dev[id].src0_dd_alloc.alloc(ctx.pool(id), nbytes_data + nbytes_padding);
        // TODO: remove this for MUSA once the Guilty Lockup issue is resolved
#ifndef GGML_USE_MUSA
            CUDA_CHECK(cudaMemsetAsync(dev[id].src0_dd, 0, nbytes_data + nbytes_padding, stream));
#else // GGML_USE_MUSA
            CUDA_CHECK(cudaMemsetAsync(dev[id].src0_dd + nbytes_data, 0, nbytes_padding, stream));
#endif // !GGML_USE_MUSA
        }

        // If src0 is on a temporary compute buffer (partial offloading) there may be some padding that needs to be cleared:
        if (ne00 % MATRIX_ROW_PADDING != 0 && ggml_is_quantized(src0->type) && ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE && src0->view_src == nullptr) {
            const size_t nbytes_data    = ggml_row_size(src0->type, (dev[id].row_high - dev[id].row_low)*ne00);
            const size_t nbytes_padding = ggml_row_size(src0->type, MATRIX_ROW_PADDING - ne00 % MATRIX_ROW_PADDING);
            CUDA_CHECK(cudaMemsetAsync(dev[id].src0_dd + nbytes_data, 0, nbytes_padding, stream));
        }

        if (src1_on_device && src1_is_contiguous) {
            dev[id].src1_ddf = (float *) src1->data;
        } else {
            dev[id].src1_ddf = dev[id].src1_ddf_alloc.alloc(ctx.pool(id), ggml_nelements(src1));
        }

        if (quantize_src1) {
            size_t src_1_ddq_size = nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs;
            if (quantize_src1 == quantize_mmq_q8_1_cuda) {
                src_1_ddq_size += get_mmq_x_max_host(dev[id].cc)*sizeof(block_q8_1_mmq);
            }
            dev[id].src1_ddq = dev[id].src1_ddq_alloc.alloc(ctx.pool(id), src_1_ddq_size);

            if (src1_on_device && src1_is_contiguous) {
                quantize_src1(dev[id].src1_ddf, dev[id].src1_ddq, ne10, ne11, ne12*ne13, src1_padded_col_size, src0->type, stream);
                CUDA_CHECK(cudaGetLastError());
            }
        }

        if (dst_on_device) {
            dev[id].dst_dd = (float *) dst->data;
        } else {
            const size_t size_dst_ddf = split ? (dev[id].row_high - dev[id].row_low)*ne1 : ggml_nelements(dst);
            dev[id].dst_dd = dev[id].dst_dd_alloc.alloc(ctx.pool(id), size_dst_ddf);
        }
    }

    // if multiple devices are used they need to wait for the main device
    // here an event is recorded that signals that the main device has finished calculating the input data
    if (split && used_devices > 1) {
        ggml_cuda_set_device(ctx.device);
        CUDA_CHECK(cudaEventRecord(src0_extra->events[ctx.device][0], ctx.stream()));
    }

    const int64_t src1_col_stride = split && used_devices > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11;
    for (int64_t src1_col_0 = 0; src1_col_0 < ne11; src1_col_0 += src1_col_stride) {
        const int64_t is = split ? (src1_col_0/src1_col_stride) % GGML_CUDA_MAX_STREAMS : 0;
        const int64_t src1_ncols = src1_col_0 + src1_col_stride > ne11 ? ne11 - src1_col_0 : src1_col_stride;

        for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
            if ((!split && id != ctx.device) || dev[id].row_low == dev[id].row_high) {
                continue;
            }

            const bool src1_on_device = id == src1_ctx->device;
            const bool  dst_on_device = id == dst_ctx->device;
            const int64_t row_diff = dev[id].row_high - dev[id].row_low;

            ggml_cuda_set_device(id);
            cudaStream_t stream = ctx.stream(id, is);

            // wait for main GPU data if necessary
            if (split && (id != ctx.device || is != 0)) {
                CUDA_CHECK(cudaStreamWaitEvent(stream, src0_extra->events[ctx.device][0], 0));
            }

            for (int64_t i0 = 0; i0 < ne13*ne12; ++i0) {
                const int64_t i03 = i0 / ne12;
                const int64_t i02 = i0 % ne12;

                size_t src1_ddq_i_offset = i0*ne11 * src1_padded_col_size*q8_1_ts/q8_1_bs;
                if (quantize_src1 == quantize_mmq_q8_1_cuda) {
                    src1_ddq_i_offset += src1_col_0 * sizeof(block_q8_1_mmq);
                } else {
                    src1_ddq_i_offset += src1_col_0 * src1_padded_col_size*q8_1_ts/q8_1_bs;
                }

                // for split tensors the data begins at i0 == i0_offset_low
                char  *  src0_dd_i =  dev[id].src0_dd + (i0/i02_divisor) * (ne01*ne00*src0_ts)/src0_bs;
                float * src1_ddf_i = dev[id].src1_ddf + (i0*ne11 + src1_col_0) * ne10;
                char  * src1_ddq_i = dev[id].src1_ddq +  src1_ddq_i_offset;
                float *   dst_dd_i =   dev[id].dst_dd + (i0*ne1  + src1_col_0) * (dst_on_device ? ne0 : row_diff);

                // the main device memory buffer can be on VRAM scratch, with space for all partial results
                // in that case an offset on dst_ddf_i is needed
                if (id == ctx.device) {
                    dst_dd_i += dev[id].row_low; // offset is 0 if no tensor split
                }

                // copy src0, src1 to device if necessary
                if (src1_is_contiguous) {
                    if (id != ctx.device) {
                        if (quantize_src1) {
                            char * src1_ddq_i_source = dev[ctx.device].src1_ddq + src1_ddq_i_offset;
                            if (quantize_src1 == quantize_mmq_q8_1_cuda) {
                                const size_t pitch = ne11*sizeof(block_q8_1_mmq);
                                const size_t width = src1_ncols*sizeof(block_q8_1_mmq);
                                const size_t height = src1_padded_col_size/(4*QK8_1);
                                CUDA_CHECK(ggml_cuda_Memcpy2DPeerAsync(src1_ddq_i, id, pitch, src1_ddq_i_source, ctx.device, pitch, width, height, stream));
                            } else {
                                CUDA_CHECK(cudaMemcpyPeerAsync(
                                    src1_ddq_i, id, src1_ddq_i_source, ctx.device, src1_ncols*src1_padded_col_size*q8_1_ts/q8_1_bs, stream));
                            }
                        } else {
                            float * src1_ddf_i_source = (float *) src1->data;
                            src1_ddf_i_source += (i0*ne11 + src1_col_0) * ne10;
                            CUDA_CHECK(cudaMemcpyPeerAsync(src1_ddf_i, id, src1_ddf_i_source, ctx.device,
                                                            src1_ncols*ne10*sizeof(float), stream));
                        }
                    }
                } else if (src1_on_device && !src1_is_contiguous) {
                    CUDA_CHECK(ggml_cuda_cpy_tensor_2d(
                                src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
                } else {
                    GGML_ABORT("fatal error");
                }

                if (quantize_src1 && !src1_is_contiguous) {
                    quantize_src1(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, 1, src1_padded_col_size, src0->type, stream);
                    CUDA_CHECK(cudaGetLastError());
                }

                if (src1_col_0 == 0 && !src0_is_contiguous && i02 % i02_divisor == 0) {
                    CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, dev[id].row_low, dev[id].row_high, stream));
                }

                // do the computation
                op(ctx, src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i,
                    dev[id].row_low, dev[id].row_high, src1_ncols, src1_padded_col_size, stream);
                CUDA_CHECK(cudaGetLastError());

                // copy dst to host or other device if necessary
                if (!dst_on_device) {
                    void * dst_off_device = dst->data;
                    if (split) {
                        // src0 = weight matrix is saved as a transposed matrix for better memory layout.
                        // dst is NOT transposed.
                        // The outputs of matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU.
                        // Instead they need to be copied to the correct slice in ne0 = dst row index.
                        // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results.
                        float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
                        GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
                        dhf_dst_i += src1_col_0*ne0 + dev[id].row_low;
                        CUDA_CHECK(ggml_cuda_Memcpy2DPeerAsync(
                            dhf_dst_i, ctx.device, ne0*sizeof(float), dst_dd_i, id, row_diff*sizeof(float), row_diff*sizeof(float), src1_ncols, stream));
                    } else {
                        float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
                        GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
                        dhf_dst_i += src1_col_0*ne0;
                        CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_dd_i, src1_ncols*ne0*sizeof(float), cudaMemcpyDeviceToDevice, stream));
                    }
                }

                // add event for the main device to wait on until other device is done
                if (split && (id != ctx.device || is != 0)) {
                    CUDA_CHECK(cudaEventRecord(src0_extra->events[id][is], stream));
                }
            }
        }
    }

    // main device waits for all other devices to be finished
    if (split && ggml_backend_cuda_get_device_count() > 1) {
        int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE;
        is_max = is_max <= GGML_CUDA_MAX_STREAMS ? is_max : GGML_CUDA_MAX_STREAMS;

        ggml_cuda_set_device(ctx.device);
        for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
            if (dev[id].row_low == dev[id].row_high) {
                continue;
            }
            for (int64_t is = 0; is < is_max; ++is) {
                CUDA_CHECK(cudaStreamWaitEvent(ctx.stream(), src0_extra->events[id][is], 0));
            }
        }
    }
}

static void ggml_cuda_mul_mat_vec_p021(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
    GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
    GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
    GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
    GGML_ASSERT(src0->type == GGML_TYPE_F16);
    GGML_ASSERT(src1->type == GGML_TYPE_F32);

    const int64_t ne00 = src0->ne[0];
    const int64_t ne01 = src0->ne[1];
    const int64_t ne02 = src0->ne[2];

    const int64_t ne12 = src1->ne[2];

    cudaStream_t main_stream = ctx.stream();

    void  * src0_ddq = src0->data;
    float * src1_ddf = (float *) src1->data;
    float * dst_ddf  = (float *) dst->data;

    ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream);
}

static void ggml_cuda_mul_mat_vec_nc(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    GGML_ASSERT(!ggml_is_transposed(src0));
    GGML_ASSERT(!ggml_is_transposed(src1));
    GGML_ASSERT(!ggml_is_permuted(src0));
    GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
    GGML_ASSERT(src0->type == GGML_TYPE_F16);
    GGML_ASSERT(src1->type == GGML_TYPE_F32);

    const int64_t ne00 = src0->ne[0];
    const int64_t ne01 = src0->ne[1];
    const int64_t ne02 = src0->ne[2];

    const int64_t nb01 = src0->nb[1];
    const int64_t nb02 = src0->nb[2];

    const int64_t ne12 = src1->ne[2];

    cudaStream_t main_stream = ctx.stream();

    void  * src0_ddq = src0->data;
    float * src1_ddf = (float *) src1->data;
    float * dst_ddf  = (float *) dst->data;

    const int64_t row_stride_x = nb01 / sizeof(half);
    const int64_t channel_stride_x = nb02 / sizeof(half);

    ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
}

static __global__ void k_compute_batched_ptrs(
        const half * src0_as_f16, const half * src1_as_f16, char * dst,
        const void ** ptrs_src, void ** ptrs_dst,
        int64_t ne12, int64_t ne13,
        int64_t ne23,
        size_t  nb02, size_t  nb03,
        size_t  nb12, size_t  nb13,
        size_t  nbd2, size_t  nbd3,
        int64_t r2,   int64_t r3) {
    int64_t i13 = blockIdx.x * blockDim.x + threadIdx.x;
    int64_t i12 = blockIdx.y * blockDim.y + threadIdx.y;

    if (i13 >= ne13 || i12 >= ne12) {
        return;
    }

    int64_t i03 = i13 / r3;
    int64_t i02 = i12 / r2;

    ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03;
    ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12 + i13*nb13;
    ptrs_dst[0*ne23 + i12 + i13*ne12] = (      char *)         dst + i12*nbd2 + i13*nbd3;
}

static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    GGML_ASSERT(!ggml_is_transposed(src0));
    GGML_ASSERT(!ggml_is_transposed(src1));

    GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
    GGML_ASSERT(src0->type == GGML_TYPE_F16);

    GGML_TENSOR_BINARY_OP_LOCALS

    const int64_t ne_dst = ggml_nelements(dst);

    cudaStream_t main_stream = ctx.stream();

    CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(), main_stream));

    void * src0_ddq = src0->data;
    half * src0_f16 = (half *) src0_ddq;
    float * src1_ddf = (float *) src1->data;
    float * dst_ddf  = (float *) dst->data;

    // convert src1 to fp16
    ggml_cuda_pool_alloc<half> src1_f16_alloc(ctx.pool());
    if (src1->type != GGML_TYPE_F16) {
        const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
        const int64_t ne_src1 = ggml_nelements(src1);
        src1_f16_alloc.alloc(ne_src1);
        GGML_ASSERT(to_fp16_cuda != nullptr);
        to_fp16_cuda(src1_ddf, src1_f16_alloc.get(), ne_src1, main_stream);
    }
    half * src1_f16 = src1->type == GGML_TYPE_F16 ? (half *) src1_ddf : src1_f16_alloc.get();

    ggml_cuda_pool_alloc<half> dst_f16(ctx.pool());
    char * dst_t;

    cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F;
    cudaDataType_t      cu_data_type    = CUDA_R_16F;

    // dst strides
    size_t nbd2 = dst->nb[2];
    size_t nbd3 = dst->nb[3];

    const half  alpha_f16 = 1.0f;
    const half  beta_f16  = 0.0f;

    const float alpha_f32 = 1.0f;
    const float beta_f32  = 0.0f;

    const void * alpha = &alpha_f16;
    const void * beta  = &beta_f16;

    if (dst->op_params[0] == GGML_PREC_DEFAULT) {
        dst_t = (char *) dst_f16.alloc(ne_dst);

        nbd2 /= sizeof(float) / sizeof(half);
        nbd3 /= sizeof(float) / sizeof(half);
    } else {
        dst_t = (char *) dst_ddf;

        cu_compute_type = CUBLAS_COMPUTE_32F;
        cu_data_type    = CUDA_R_32F;

        alpha = &alpha_f32;
        beta  = &beta_f32;
    }

    GGML_ASSERT(ne12 % ne02 == 0);
    GGML_ASSERT(ne13 % ne03 == 0);

    // broadcast factors
    const int64_t r2 = ne12/ne02;
    const int64_t r3 = ne13/ne03;

#if 0
    // use cublasGemmEx
    {
        for (int i13 = 0; i13 < ne13; ++i13) {
            for (int i12 = 0; i12 < ne12; ++i12) {
                int i03 = i13 / r3;
                int i02 = i12 / r2;

                CUBLAS_CHECK(
                        cublasGemmEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
                            ne01, ne11, ne10,
                            alpha, (const char *) src0_as_f16 + i02*src0->nb[2]   + i03*src0->nb[3]  , CUDA_R_16F,   nb01/sizeof(half),
                                   (const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, CUDA_R_16F,   nb11/sizeof(float),
                            beta,  (      char *)       dst_t + i12*nbd2          + i13*nbd3,          cu_data_type, ne01,
                            cu_compute_type,
                            CUBLAS_GEMM_DEFAULT_TENSOR_OP));
            }
        }
    }
#else
#ifdef GGML_USE_MUSA
    GGML_ASSERT(false);
#else // !GGML_USE_MUSA
    if (r2 == 1 && r3 == 1 && ggml_is_contiguous_2(src0) && ggml_is_contiguous_2(src1)) {
        // there is no broadcast and src0, src1 are contiguous across dims 2, 3
        // use cublasGemmStridedBatchedEx
        CUBLAS_CHECK(
        cublasGemmStridedBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N,
                ne01, ne11, ne10,
                alpha, (const char *) src0_f16, CUDA_R_16F,   nb01/nb00, nb02/nb00,  // strideA
                       (const char *) src1_f16, CUDA_R_16F,   nb11/nb10, nb12/nb10,  // strideB
                beta,  (      char *)    dst_t, cu_data_type, ne01,       nb2/nb0,   // strideC
                ne12*ne13,
                cu_compute_type,
                CUBLAS_GEMM_DEFAULT_TENSOR_OP));
    } else {
        // use cublasGemmBatchedEx
        const int ne23 = ne12*ne13;

        ggml_cuda_pool_alloc<const void *> ptrs_src(ctx.pool(), 2*ne23);
        ggml_cuda_pool_alloc<      void *> ptrs_dst(ctx.pool(), 1*ne23);

        dim3 block_dims(ne13, ne12);
        k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>(
                src0_f16, src1_f16, dst_t,
                ptrs_src.get(), ptrs_dst.get(),
                ne12, ne13,
                ne23,
                nb02, nb03,
                src1->type == GGML_TYPE_F16 ? nb12 : nb12/2,
                src1->type == GGML_TYPE_F16 ? nb13 : nb13/2,
                nbd2, nbd3,
                r2, r3);
        CUDA_CHECK(cudaGetLastError());

        CUBLAS_CHECK(
        cublasGemmBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N,
                ne01, ne11, ne10,
                alpha, (const void **) (ptrs_src.get() + 0*ne23), CUDA_R_16F,   nb01/nb00,
                       (const void **) (ptrs_src.get() + 1*ne23), CUDA_R_16F,   nb11/nb10,
                beta,  (      void **) (ptrs_dst.get() + 0*ne23), cu_data_type, ne01,
                ne23,
                cu_compute_type,
                CUBLAS_GEMM_DEFAULT_TENSOR_OP));
    }
#endif // GGML_USE_MUSA
#endif

    if (dst->op_params[0] == GGML_PREC_DEFAULT) {
        const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
        to_fp32_cuda(dst_f16.get(), dst_ddf, ne_dst, main_stream);
    }
}

static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    const bool split = ggml_backend_buft_is_cuda_split(src0->buffer->buft);

    bool use_dequantize_mul_mat_vec = ggml_cuda_dmmv_type_supported(src0->type)
        && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
        && src0->ne[0] % (GGML_CUDA_DMMV_X*2) == 0 && src1->ne[1] == 1;
    bool          use_mul_mat_vec_q =  ggml_is_quantized(src0->type)
        && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
        && src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
    bool              use_mul_mat_q =  ggml_is_quantized(src0->type)
        && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;

    // if mmvq is available it's a better choice than dmmv:
#ifndef GGML_CUDA_FORCE_DMMV
    use_dequantize_mul_mat_vec = use_dequantize_mul_mat_vec && !use_mul_mat_vec_q;
#endif // GGML_CUDA_FORCE_DMMV

    bool any_gpus_with_slow_fp16 = false;

    if (split) {
        ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
        auto & tensor_split = buft_ctx->tensor_split;
        for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
            // skip devices that are not going to do any work:
            if (tensor_split[id] >= (id + 1 < ggml_backend_cuda_get_device_count() ? tensor_split[id + 1] : 1.0f)) {
                continue;
            }

            const int cc            = ggml_cuda_info().devices[id].cc;
            use_mul_mat_q           = use_mul_mat_q           && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]);
            any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_available(cc);
        }
    } else {
        const int cc            = ggml_cuda_info().devices[ctx.device].cc;
        use_mul_mat_q           = use_mul_mat_q           && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]);
        any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_available(cc);
    }

    // debug helpers
    //printf("src0: %8d %8d %8d %8d\n", src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]);
    //printf("      %8d %8d %8d %8d\n", src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]);
    //printf("src1: %8d %8d %8d %8d\n", src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]);
    //printf("      %8d %8d %8d %8d\n", src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]);
    //printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
    //printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);

    if (!split && any_gpus_with_slow_fp16 && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
        // FP32 precision KQ single-batch for batch size 1 without FlashAttention
        ggml_cuda_mul_mat_vec_p021(ctx, src0, src1, dst);
    } else if (!split && any_gpus_with_slow_fp16 && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
        // FP32 precision KQV single-batch for batch size 1 without FlashAttention
        ggml_cuda_mul_mat_vec_nc(ctx, src0, src1, dst);
    } else if (!split && src0->type == GGML_TYPE_F16 && (src1->type == GGML_TYPE_F16 || !any_gpus_with_slow_fp16)
               && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
        // KQ + KQV multi-batch without FlashAttention
        ggml_cuda_mul_mat_batched_cublas(ctx, src0, src1, dst);
    } else if (use_dequantize_mul_mat_vec) {
        ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_dequantize_mul_mat_vec, nullptr);
    } else if (use_mul_mat_vec_q) {
        ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_vec_q, quantize_row_q8_1_cuda);
    } else if (use_mul_mat_q) {
        ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_q, quantize_mmq_q8_1_cuda);
    } else {
        ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_cublas, nullptr);
    }
}

struct mmid_row_mapping {
    int32_t i1;
    int32_t i2;
};

static __global__ void k_copy_src1_to_contiguous(const char * __restrict__ src1_original, char * __restrict__ src1_contiguous,
                                                 int * __restrict__ cur_src1_row, mmid_row_mapping * __restrict__ row_mapping,
                                                 const char * __restrict ids, int64_t i02, size_t ids_nb1, size_t ids_nb0,
                                                 int64_t ne11, int64_t ne10,
                                                 size_t nb11, size_t nb12) {
    int32_t iid1 = blockIdx.x;
    int32_t id = blockIdx.y;

    const int32_t row_id_i = *(const int32_t *) (ids + iid1*ids_nb1 + id*ids_nb0);

    if (row_id_i != i02) {
        return;
    }

    const int64_t i11 = id % ne11;
    const int64_t i12 = iid1;

    __shared__ int src1_row;
    if (threadIdx.x == 0) {
        src1_row = atomicAdd(cur_src1_row, 1);
        row_mapping[src1_row] = {id, iid1};
    }
    __syncthreads();

    const float * src1_row_original = (const float *)(src1_original + i11*nb11 + i12*nb12);
    float * src1_row_contiguous = (float *)(src1_contiguous + src1_row*nb11);

    for (int i = threadIdx.x; i < ne10; i += blockDim.x) {
        src1_row_contiguous[i] = src1_row_original[i];
    }
}

static __global__ void k_copy_dst_from_contiguous(char * __restrict__ dst_original, const char * __restrict__ dst_contiguous,
                                                  const mmid_row_mapping * __restrict__ row_mapping,
                                                  int64_t ne0,
                                                  size_t nb1, size_t nb2) {
    int32_t i = blockIdx.x;

    const int32_t i1 = row_mapping[i].i1;
    const int32_t i2 = row_mapping[i].i2;

    const float * dst_row_contiguous = (const float *)(dst_contiguous + i*nb1);
    float * dst_row_original = (float *)(dst_original + i1*nb1 + i2*nb2);

    for (int j = threadIdx.x; j < ne0; j += blockDim.x) {
        dst_row_original[j] = dst_row_contiguous[j];
    }
}

static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    const ggml_tensor * src0 = dst->src[0];
    const ggml_tensor * src1 = dst->src[1];
    const ggml_tensor * ids  = dst->src[2];

    GGML_TENSOR_BINARY_OP_LOCALS

    GGML_ASSERT(!ggml_backend_buft_is_cuda_split(src0->buffer->buft) && "mul_mat_id does not support split buffers");

    cudaStream_t stream = ctx.stream();

    const int64_t n_as = ne02;
    const int64_t n_ids = ids->ne[0];

    std::vector<char> ids_host(ggml_nbytes(ids));
    const char * ids_dev = (const char *) ids->data;
    CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
    CUDA_CHECK(cudaStreamSynchronize(stream));

    ggml_tensor src0_row = *src0;
    ggml_tensor src1_row = *src1;
    ggml_tensor dst_row  = *dst;

    char * src0_original = (char *) src0->data;
    char * src1_original = (char *) src1->data;
    char * dst_original  = (char *)  dst->data;

    src0_row.ne[2] = 1;
    src0_row.ne[3] = 1;
    src0_row.nb[3] = nb02;

    src1_row.ne[1] = 1;
    src1_row.ne[2] = 1;
    src1_row.ne[3] = 1;
    src1_row.nb[2] = nb11;
    src1_row.nb[3] = nb11;

    dst_row.ne[1] = 1;
    dst_row.ne[2] = 1;
    dst_row.ne[3] = 1;
    dst_row.nb[2] = nb1;
    dst_row.nb[3] = nb1;

    if (ne12 == 1) {
        for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
            for (int64_t id = 0; id < n_ids; id++) {
                const int32_t i02 = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);

                GGML_ASSERT(i02 >= 0 && i02 < n_as);

                const int64_t i11 = id % ne11;
                const int64_t i12 = iid1;

                const int64_t i1 = id;
                const int64_t i2 = i12;

                src0_row.data = src0_original + i02*nb02;
                src1_row.data = src1_original + i11*nb11 + i12*nb12;
                dst_row.data  =  dst_original + i1*nb1   + i2*nb2;

                ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
            }
        }
    } else {
        ggml_cuda_pool_alloc<char> src1_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(src1));
        ggml_cuda_pool_alloc<char>  dst_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(dst));

        src1_row.data = src1_contiguous.get();
        dst_row.data  =  dst_contiguous.get();

        for (int64_t i02 = 0; i02 < n_as; i02++) {
            int64_t num_src1_rows = 0;

            for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
                for (int64_t id = 0; id < n_ids; id++) {
                    const int32_t row_id_i = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);

                    GGML_ASSERT(row_id_i >= 0 && row_id_i < n_as);

                    if (row_id_i != i02) {
                        continue;
                    }

                    num_src1_rows++;
                }
            }

            if (num_src1_rows == 0) {
                continue;
            }

            ggml_cuda_pool_alloc<int> dev_cur_src1_row(ctx.pool(), 1);
            ggml_cuda_pool_alloc<mmid_row_mapping> dev_row_mapping(ctx.pool(), num_src1_rows);
            CUDA_CHECK(cudaMemsetAsync(dev_cur_src1_row.get(), 0, sizeof(int), stream));

            {
                dim3 block_dims(std::min((unsigned int)ne10, 768u));
                dim3 grid_dims(ids->ne[1], n_ids);
                k_copy_src1_to_contiguous<<<grid_dims, block_dims, 0, stream>>>(
                        src1_original, src1_contiguous.get(),
                        dev_cur_src1_row.get(), dev_row_mapping.get(),
                        ids_dev, i02, ids->nb[1], ids->nb[0],
                        ne11, ne10,
                        nb11, nb12);
                CUDA_CHECK(cudaGetLastError());
            }

            src0_row.data = src0_original + i02*nb02;

            GGML_ASSERT(nb11 == sizeof(float)*ne10);
            GGML_ASSERT(nb1 == sizeof(float)*ne0);

            src1_row.ne[1] = num_src1_rows;
            src1_row.nb[1] = nb11;
            src1_row.nb[2] = num_src1_rows*nb11;
            src1_row.nb[3] = num_src1_rows*nb11;

            dst_row.ne[1] = num_src1_rows;
            dst_row.nb[1] = nb1;
            dst_row.nb[2] = num_src1_rows*nb1;
            dst_row.nb[3] = num_src1_rows*nb1;

            ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row);

            {
                dim3 block_dims(std::min((unsigned int)ne0, 768u));
                dim3 grid_dims(num_src1_rows);
                k_copy_dst_from_contiguous<<<grid_dims, block_dims, 0, stream>>>(
                        dst_original, dst_contiguous.get(),
                        dev_row_mapping.get(),
                        ne0,
                        nb1, nb2);
                CUDA_CHECK(cudaGetLastError());
            }
        }
    }
}

static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct ggml_tensor * dst) {
    // why is this here instead of mul_mat?
    if (dst->src[0] != nullptr && ggml_backend_buft_is_cuda_split(dst->src[0]->buffer->buft)) {
        ggml_cuda_set_peer_access(dst->src[1]->ne[1], ctx.device);
    }

    switch (dst->op) {
        case GGML_OP_ARGMAX:
            ggml_cuda_argmax(ctx, dst);
            break;
        case GGML_OP_COUNT_EQUAL:
            ggml_cuda_count_equal(ctx, dst);
            break;
        case GGML_OP_REPEAT:
            ggml_cuda_op_repeat(ctx, dst);
            break;
        case GGML_OP_REPEAT_BACK:
            ggml_cuda_op_repeat_back(ctx, dst);
            break;
        case GGML_OP_GET_ROWS:
            ggml_cuda_op_get_rows(ctx, dst);
            break;
        case GGML_OP_DUP:
            ggml_cuda_dup(ctx, dst);
            break;
        case GGML_OP_CPY:
            ggml_cuda_cpy(ctx, dst->src[0], dst->src[1]);
            break;
        case GGML_OP_CONT:
            ggml_cuda_dup(ctx, dst);
            break;
        case GGML_OP_ADD:
        case GGML_OP_ADD1: // TODO: more efficient implementation
            ggml_cuda_op_add(ctx, dst);
            break;
        case GGML_OP_SUB:
            ggml_cuda_op_sub(ctx, dst);
            break;
        case GGML_OP_ACC:
            ggml_cuda_op_acc(ctx, dst);
            break;
        case GGML_OP_MUL:
            ggml_cuda_op_mul(ctx, dst);
            break;
        case GGML_OP_DIV:
            ggml_cuda_op_div(ctx, dst);
            break;
        case GGML_OP_UNARY:
            switch (ggml_get_unary_op(dst)) {
                case GGML_UNARY_OP_NEG:
                    ggml_cuda_op_neg(ctx, dst);
                    break;
                case GGML_UNARY_OP_STEP:
                    ggml_cuda_op_step(ctx, dst);
                    break;
                case GGML_UNARY_OP_GELU:
                    ggml_cuda_op_gelu(ctx, dst);
                    break;
                case GGML_UNARY_OP_SILU:
                    ggml_cuda_op_silu(ctx, dst);
                    break;
                case GGML_UNARY_OP_GELU_QUICK:
                    ggml_cuda_op_gelu_quick(ctx, dst);
                    break;
                case GGML_UNARY_OP_TANH:
                    ggml_cuda_op_tanh(ctx, dst);
                    break;
                case GGML_UNARY_OP_RELU:
                    ggml_cuda_op_relu(ctx, dst);
                    break;
                case GGML_UNARY_OP_SIGMOID:
                    ggml_cuda_op_sigmoid(ctx, dst);
                    break;
                case GGML_UNARY_OP_HARDSIGMOID:
                    ggml_cuda_op_hardsigmoid(ctx, dst);
                    break;
                case GGML_UNARY_OP_HARDSWISH:
                    ggml_cuda_op_hardswish(ctx, dst);
                    break;
                case GGML_UNARY_OP_EXP:
                    ggml_cuda_op_exp(ctx, dst);
                    break;
                default:
                    return false;
            }
            break;
        case GGML_OP_NORM:
            ggml_cuda_op_norm(ctx, dst);
            break;
        case GGML_OP_GROUP_NORM:
            ggml_cuda_op_group_norm(ctx, dst);
            break;
        case GGML_OP_CONCAT:
            ggml_cuda_op_concat(ctx, dst);
            break;
        case GGML_OP_UPSCALE:
            ggml_cuda_op_upscale(ctx, dst);
            break;
        case GGML_OP_PAD:
            ggml_cuda_op_pad(ctx, dst);
            break;
        case GGML_OP_ARANGE:
            ggml_cuda_op_arange(ctx, dst);
            break;
        case GGML_OP_TIMESTEP_EMBEDDING:
            ggml_cuda_op_timestep_embedding(ctx, dst);
            break;
        case GGML_OP_LEAKY_RELU:
            ggml_cuda_op_leaky_relu(ctx, dst);
            break;
        case GGML_OP_RMS_NORM:
            ggml_cuda_op_rms_norm(ctx, dst);
            break;
        case GGML_OP_MUL_MAT:
            if (dst->src[0]->ne[3] != dst->src[1]->ne[3]) {
                GGML_LOG_ERROR("%s: cannot compute %s: src0->ne[3] = %" PRId64 ", src1->ne[3] = %" PRId64 " - fallback to CPU\n", __func__, dst->name, dst->src[0]->ne[3], dst->src[1]->ne[3]);
                return false;
            } else {
                ggml_cuda_mul_mat(ctx, dst->src[0], dst->src[1], dst);
            }
            break;
        case GGML_OP_MUL_MAT_ID:
            ggml_cuda_mul_mat_id(ctx, dst);
            break;
        case GGML_OP_OUT_PROD:
            ggml_cuda_out_prod(ctx, dst);
            break;
        case GGML_OP_SCALE:
            ggml_cuda_op_scale(ctx, dst);
            break;
        case GGML_OP_SQR:
            ggml_cuda_op_sqr(ctx, dst);
            break;
        case GGML_OP_SQRT:
            ggml_cuda_op_sqrt(ctx, dst);
            break;
        case GGML_OP_SIN:
            ggml_cuda_op_sin(ctx, dst);
            break;
        case GGML_OP_COS:
            ggml_cuda_op_cos(ctx, dst);
            break;
        case GGML_OP_CLAMP:
            ggml_cuda_op_clamp(ctx, dst);
            break;
        case GGML_OP_NONE:
        case GGML_OP_RESHAPE:
        case GGML_OP_VIEW:
        case GGML_OP_PERMUTE:
        case GGML_OP_TRANSPOSE:
                break;
        case GGML_OP_DIAG_MASK_INF:
            ggml_cuda_op_diag_mask_inf(ctx, dst);
            break;
        case GGML_OP_SOFT_MAX:
            ggml_cuda_op_soft_max(ctx, dst);
            break;
        case GGML_OP_ROPE:
            ggml_cuda_op_rope(ctx, dst);
            break;
        case GGML_OP_IM2COL:
            ggml_cuda_op_im2col(ctx, dst);
            break;
        case GGML_OP_CONV_TRANSPOSE_1D:
            ggml_cuda_op_conv_transpose_1d(ctx,dst);
            break;
        case GGML_OP_POOL_2D:
            ggml_cuda_op_pool2d(ctx, dst);
            break;
        case GGML_OP_SUM:
            ggml_cuda_op_sum(ctx, dst);
            break;
        case GGML_OP_SUM_ROWS:
            ggml_cuda_op_sum_rows(ctx, dst);
            break;
        case GGML_OP_ARGSORT:
            ggml_cuda_op_argsort(ctx, dst);
            break;
        case GGML_OP_FLASH_ATTN_EXT:
            ggml_cuda_flash_attn_ext(ctx, dst);
            break;
        case GGML_OP_CROSS_ENTROPY_LOSS:
            ggml_cuda_cross_entropy_loss(ctx, dst);
            break;
        case GGML_OP_RWKV_WKV:
            ggml_cuda_op_rwkv_wkv(ctx, dst);
            break;
        case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
            ggml_cuda_cross_entropy_loss_back(ctx, dst);
            break;
        case GGML_OP_OPT_STEP_ADAMW:
            ggml_cuda_opt_step_adamw(ctx, dst);
            break;
        default:
            return false;
    }

    cudaError_t err = cudaGetLastError();
    if (err != cudaSuccess) {
        GGML_LOG_ERROR("%s: %s failed\n", __func__, ggml_op_desc(dst));
        CUDA_CHECK(err);
    }

    return true;
}

////////////////////////////////////////////////////////////////////////////////

// backend

static const char * ggml_backend_cuda_get_name(ggml_backend_t backend) {
    ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;

    return cuda_ctx->name.c_str();
}

static void ggml_backend_cuda_free(ggml_backend_t backend) {
    ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;

    delete cuda_ctx;
    delete backend;
}

static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
    ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
    ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;

    GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");

    CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cuda_ctx->stream()));
}

static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
    ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
    ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;

    GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");

    CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cuda_ctx->stream()));
}

static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const ggml_tensor * src, ggml_tensor * dst) {
    ggml_backend_buffer_t buf_src = src->view_src ? src->view_src->buffer : src->buffer;
    ggml_backend_buffer_t buf_dst = dst->view_src ? dst->view_src->buffer : dst->buffer;

    if (!ggml_backend_is_cuda(backend_src) || !ggml_backend_is_cuda(backend_dst)) {
        return false;
    }

    if (!ggml_backend_buffer_is_cuda(src->buffer) || !ggml_backend_buffer_is_cuda(dst->buffer)) {
        return false;
    }

    // device -> device copy
    ggml_backend_cuda_context * cuda_ctx_src = (ggml_backend_cuda_context *)backend_src->context;
    ggml_backend_cuda_context * cuda_ctx_dst = (ggml_backend_cuda_context *)backend_dst->context;

    ggml_backend_cuda_buffer_context * buf_ctx_src = (ggml_backend_cuda_buffer_context *)buf_src->context;
    ggml_backend_cuda_buffer_context * buf_ctx_dst = (ggml_backend_cuda_buffer_context *)buf_dst->context;

    if (cuda_ctx_src->device != buf_ctx_src->device || cuda_ctx_dst->device != buf_ctx_dst->device) {
#ifndef NDEBUG
        GGML_LOG_DEBUG("%s: backend and buffer devices do not match\n", __func__);
#endif
        return false;
    }

    if (backend_src != backend_dst) {
        // copy on src stream
        if (cuda_ctx_src->device == cuda_ctx_dst->device) {
            CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_src->stream()));
        } else {
#ifdef GGML_CUDA_NO_PEER_COPY
            return false;
#else
            CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, cuda_ctx_dst->device, src->data, cuda_ctx_src->device, ggml_nbytes(dst), cuda_ctx_src->stream()));
#endif
        }

        // record event on src stream after the copy
        if (!cuda_ctx_src->copy_event) {
            ggml_cuda_set_device(cuda_ctx_src->device);
            CUDA_CHECK(cudaEventCreateWithFlags(&cuda_ctx_src->copy_event, cudaEventDisableTiming));
        }

        CUDA_CHECK(cudaEventRecord(cuda_ctx_src->copy_event, cuda_ctx_src->stream()));

        // wait on dst stream for the copy to complete
        CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx_dst->stream(), cuda_ctx_src->copy_event, 0));
    } else {
        // src and dst are on the same backend
        CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_src->stream()));
    }
    return true;
}

static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
    ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;

    CUDA_CHECK(cudaStreamSynchronize(cuda_ctx->stream()));

    GGML_UNUSED(backend);
}

#ifdef USE_CUDA_GRAPH
static void set_ggml_graph_node_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) {
    graph_node_properties->node_address = node->data;
    graph_node_properties->node_op = node->op;
    for (int i = 0; i < GGML_MAX_DIMS; i++) {
        graph_node_properties->ne[i] = node->ne[i];
        graph_node_properties->nb[i] = node->nb[i];
    }
    for (int i = 0; i < GGML_MAX_SRC; i++) {
        graph_node_properties->src_address[i] = node->src[i] ? node->src[i]->data : nullptr;
    }
    memcpy(graph_node_properties->op_params, node->op_params, GGML_MAX_OP_PARAMS);
}

static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) {
    if (node->data != graph_node_properties->node_address &&
          node->op != GGML_OP_CPY &&
          node->op != GGML_OP_VIEW) {
        return false;
    }

    if (node->op != graph_node_properties->node_op) {
        return false;
    }

    for (int i = 0; i < GGML_MAX_DIMS; i++) {
        if (node->ne[i] != graph_node_properties->ne[i]) {
            return false;
        }
        if (node->nb[i] != graph_node_properties->nb[i]) {
            return false;
        }
    }

    for (int i = 0; i < GGML_MAX_SRC; i++) {
        if (node->src[i] &&
            node->src[i]->data != graph_node_properties->src_address[i] &&
            node->op != GGML_OP_CPY &&
            node->op != GGML_OP_VIEW
        ) {
            return false;
        }
    }

    if (node->op == GGML_OP_SCALE &&
        memcmp(graph_node_properties->op_params, node->op_params, GGML_MAX_OP_PARAMS) != 0) {
        return false;
    }

    return true;
}
#endif

static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
    ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;

    ggml_cuda_set_device(cuda_ctx->device);

#ifdef USE_CUDA_GRAPH
    static const bool disable_cuda_graphs_due_to_env = (getenv("GGML_CUDA_DISABLE_GRAPHS") != nullptr);

    // Objects required for CUDA Graph
    if (cuda_ctx->cuda_graph == nullptr) {
        cuda_ctx->cuda_graph.reset(new ggml_cuda_graph());
    }

    bool use_cuda_graph = true;
    bool cuda_graph_update_required = false;
    // vector of pointers to CUDA cpy kernels, which are required to identify
    // kernel parameters which need updated in the graph for each token
    std::vector<void *> ggml_cuda_cpy_fn_ptrs;

    if (cuda_ctx->cuda_graph->graph == nullptr) {
        if (ggml_cuda_info().devices[cuda_ctx->device].cc < CC_AMPERE) {
            cuda_ctx->cuda_graph->disable_due_to_gpu_arch = true;
#ifndef NDEBUG
            GGML_LOG_DEBUG("%s: disabling CUDA graphs due to GPU architecture\n", __func__);
#endif
        }
    }

    // Disable CUDA graphs in presence of env var, old GPU, use-case which is changing too rapidly,
    // or previous graph capture failure.
    // Also disable for multi-gpu for now. TO DO investigate
    if (disable_cuda_graphs_due_to_env
        || cuda_ctx->cuda_graph->disable_due_to_gpu_arch
        || cuda_ctx->cuda_graph->disable_due_to_too_many_updates
        || cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture) {
        use_cuda_graph = false;
    }

    if (use_cuda_graph) {
        if (cuda_ctx->cuda_graph->instance == nullptr) {
            cuda_graph_update_required = true;
        }

        // Check if the graph size has changed
        if (cuda_ctx->cuda_graph->ggml_graph_properties.size() != (size_t)cgraph->n_nodes) {
            cuda_graph_update_required = true;
            cuda_ctx->cuda_graph->ggml_graph_properties.resize(cgraph->n_nodes);
        }

        // Loop over nodes in GGML graph to determine if CUDA graph update is required
        // and store properties to allow this comparison for the next token
        for (int i = 0; i < cgraph->n_nodes; i++) {
            bool has_matching_properties = true;
            if (!cuda_graph_update_required) {
                has_matching_properties = ggml_graph_node_has_matching_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
            }
            if (!has_matching_properties) {
                cuda_graph_update_required = true;
            }
            set_ggml_graph_node_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
        }

        // Loop over nodes in GGML graph to obtain info needed for CUDA graph
        cuda_ctx->cuda_graph->updated_kernel_arg.clear();
        for (int i = 0; i < cgraph->n_nodes; i++) {
            ggml_tensor * node = cgraph->nodes[i];

            if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
                continue;
            }

            if (node->src[0] && node->src[0]->buffer && ggml_backend_buft_is_cuda_split(node->src[0]->buffer->buft)) {
                use_cuda_graph = false; // Split buffers are not supported by CUDA graph capture
#ifndef NDEBUG
                GGML_LOG_DEBUG("%s: disabling CUDA graphs due to split buffer\n", __func__);
#endif
            }

            if (node->op == GGML_OP_MUL_MAT_ID) {
                use_cuda_graph = false; // This node type is not supported by CUDA graph capture
#ifndef NDEBUG
                GGML_LOG_DEBUG("%s: disabling CUDA graphs due to mul_mat_id\n", __func__);
#endif
            }

            if (node->op == GGML_OP_ADD && node->src[1] && node->src[1]->ne[1] > 1) {
                // disable CUDA graphs for batch size > 1 for now.
                // Changes in batch size or context size can cause changes to the grid size of some kernels.
                use_cuda_graph = false;
#ifndef NDEBUG
                GGML_LOG_DEBUG("%s: disabling CUDA graphs due to batch size > 1 [%s] [%ld %ld %ld %ld]\n", __func__, node->name, node->ne[0], node->ne[1], node->ne[2], node->ne[3]);
#endif
            }

            if (node->op == GGML_OP_CPY) {
                // store the copy op parameter which changes with each token.
                cuda_ctx->cuda_graph->updated_kernel_arg.push_back((char **) &(node->src[1]->data));
                // store a pointer to each copy op CUDA kernel to identify it later
                void * ptr = ggml_cuda_cpy_fn(node->src[0], node->src[1]);
                if (!ptr) {
                    use_cuda_graph = false;
#ifndef NDEBUG
                    GGML_LOG_DEBUG("%s: disabling CUDA graphs due to unsupported copy op\n", __func__);
#endif
                } else {
                    if (std::find(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), ptr) == ggml_cuda_cpy_fn_ptrs.end()) {
                        ggml_cuda_cpy_fn_ptrs.push_back(ptr);
                    }
                }
            }

            if (!use_cuda_graph) {
                break;
            }
        }

        // Disable CUDA graphs (from the next token) if the use-case is demanding too many consecutive graph updates.
        if (use_cuda_graph && cuda_graph_update_required) {
            cuda_ctx->cuda_graph->number_consecutive_updates++;
        } else {
            cuda_ctx->cuda_graph->number_consecutive_updates = 0;
        }

        if (cuda_ctx->cuda_graph->number_consecutive_updates >= 4) {
            cuda_ctx->cuda_graph->disable_due_to_too_many_updates = true;
#ifndef NDEBUG
            GGML_LOG_DEBUG("%s: disabling CUDA graphs due to too many consecutive updates\n", __func__);
#endif
        }
    }

    if (use_cuda_graph && cuda_graph_update_required) { // Start CUDA graph capture
        CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed));
    }

#else
    bool use_cuda_graph = false;
    bool cuda_graph_update_required = false;
#endif // USE_CUDA_GRAPH

    bool graph_evaluated_or_captured = false;

    while (!graph_evaluated_or_captured) {
        // Only perform the graph execution if CUDA graphs are not enabled, or we are capturing the graph.
        // With the use of CUDA graphs, the execution will be performed by the graph launch.
        if (!use_cuda_graph || cuda_graph_update_required) {
            for (int i = 0; i < cgraph->n_nodes; i++) {
                ggml_tensor * node = cgraph->nodes[i];

                if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
                    continue;
                }

#ifndef NDEBUG
                assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device));
                for (int j = 0; j < GGML_MAX_SRC; j++) {
                    if (node->src[j] != nullptr) {
                        assert(node->src[j]->buffer);
                        assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) ||
                               ggml_backend_buft_is_cuda_split(node->src[j]->buffer->buft));
                    }
                }
#endif

                bool ok = ggml_cuda_compute_forward(*cuda_ctx, node);
                if (!ok) {
                    GGML_LOG_ERROR("%s: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
                }
                GGML_ASSERT(ok);
            }
        }

#ifdef USE_CUDA_GRAPH
        if (use_cuda_graph && cuda_graph_update_required) { // End CUDA graph capture
            if (cuda_ctx->cuda_graph->graph != nullptr) {
                CUDA_CHECK(cudaGraphDestroy(cuda_ctx->cuda_graph->graph));
                cuda_ctx->cuda_graph->graph = nullptr;
            }
            CUDA_CHECK(cudaStreamEndCapture(cuda_ctx->stream(), &cuda_ctx->cuda_graph->graph));

#if 0
            if (disable_cuda_graphs_due_to_failed_capture) {
                use_cuda_graph = false;
                cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture = true;
#ifndef NDEBUG
                GGML_LOG_DEBUG("%s: disabling CUDA graphs due to failed graph capture\n", __func__);
#endif
            } else {
                graph_evaluated_or_captured = true; // CUDA graph has been captured
            }
#endif
            graph_evaluated_or_captured = true; // CUDA graph has been captured
        } else {
            graph_evaluated_or_captured = true; // ggml graph has been directly evaluated
        }
    }

    if (use_cuda_graph) {
        if (cuda_ctx->cuda_graph->instance == nullptr) { // Create executable graph from captured graph.
            CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
        }

        // Perform update to graph (if required for this token), and change copy parameter (required for every token)

        if (cuda_graph_update_required) {
            // Extract nodes from graph
            // First call with null argument gets number of nodes in graph
            CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, nullptr, &cuda_ctx->cuda_graph->num_nodes));
            // Subsequent call with non-null argument gets nodes
            cuda_ctx->cuda_graph->nodes.clear();
            cuda_ctx->cuda_graph->nodes.resize(cuda_ctx->cuda_graph->num_nodes);
            cuda_ctx->cuda_graph->params.clear();
            cuda_ctx->cuda_graph->params.resize(cuda_ctx->cuda_graph->num_nodes);
            if (cuda_ctx->cuda_graph->num_nodes > 0) {
                CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, cuda_ctx->cuda_graph->nodes.data(), &cuda_ctx->cuda_graph->num_nodes));

                // Loop over nodes, and extract kernel parameters from each node
                for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
                    cudaGraphNodeType node_type;
                    CUDA_CHECK(cudaGraphNodeGetType(cuda_ctx->cuda_graph->nodes[i], &node_type));
                    if (node_type == cudaGraphNodeTypeKernel) {
                        cudaError_t stat = cudaGraphKernelNodeGetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]); // Get params using runtime
                        if (stat == cudaErrorInvalidDeviceFunction) {
                            // Fails due to incorrect handling by CUDA runtime of CUDA BLAS node.
                            // We don't need to update blas nodes, so clear error and move on.
                            cudaGetLastError();
                        } else {
                            GGML_ASSERT(stat == cudaSuccess);
                        }
                    }
                }
            }
        }

        // One of the arguments to the copy kernel is updated for each token, hence we need to
        // replace that argument with the updated value in the CUDA graph
        if (!cuda_graph_update_required) { // on update steps, the live parameters will already be captured
            int k = 0;
            for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
                if(count(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), cuda_ctx->cuda_graph->params[i].func) > 0) {
                    char ** updated_kernel_arg_ptr = cuda_ctx->cuda_graph->updated_kernel_arg.at(k++);
                    cuda_ctx->cuda_graph->params[i].kernelParams[1] = updated_kernel_arg_ptr;
                    CUDA_CHECK(cudaGraphKernelNodeSetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]));
                }
            }
        }

        // Update graph executable
        cudaGraphExecUpdateResultInfo result_info;
        cudaError_t stat = cudaGraphExecUpdate(cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, &result_info);
        if (stat == cudaErrorGraphExecUpdateFailure) {
#ifndef NDEBUG
            GGML_LOG_DEBUG("%s: CUDA graph update failed\n", __func__);
#endif
            // The pre-existing graph exec cannot be updated due to violated constraints
            // so instead clear error and re-instantiate
            cudaGetLastError();
            CUDA_CHECK(cudaGraphExecDestroy(cuda_ctx->cuda_graph->instance));
            cuda_ctx->cuda_graph->instance = nullptr;
            CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
        } else {
            GGML_ASSERT(stat == cudaSuccess);
        }
        // Launch graph
        CUDA_CHECK(cudaGraphLaunch(cuda_ctx->cuda_graph->instance, cuda_ctx->stream()));
#else
        graph_evaluated_or_captured = true;
#endif // USE_CUDA_GRAPH
    }

    return GGML_STATUS_SUCCESS;
}

static void ggml_backend_cuda_event_record(ggml_backend_t backend, ggml_backend_event_t event) {
    ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;

    CUDA_CHECK(cudaEventRecord((cudaEvent_t)event->context, cuda_ctx->stream()));
}

static void ggml_backend_cuda_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
    ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;

    if (ggml_backend_is_cuda(backend)) {
        CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx->stream(), (cudaEvent_t)event->context, 0));
    } else {
#if 0
        // untested
        auto wait_fn = [](void * user_data) {
            ggml_backend_event_t event = (ggml_backend_event_t)user_data;
            ggml_backend_event_synchronize(event);
        };

        CUDA_CHECK(cudaLaunchHostFunc(cuda_ctx->stream(), wait_fn, event));
#endif
        GGML_ABORT("fatal error");
    }
}

static const ggml_backend_i ggml_backend_cuda_interface = {
    /* .get_name                = */ ggml_backend_cuda_get_name,
    /* .free                    = */ ggml_backend_cuda_free,
    /* .set_tensor_async        = */ ggml_backend_cuda_set_tensor_async,
    /* .get_tensor_async        = */ ggml_backend_cuda_get_tensor_async,
    /* .cpy_tensor_async        = */ ggml_backend_cuda_cpy_tensor_async,
    /* .synchronize             = */ ggml_backend_cuda_synchronize,
    /* .graph_plan_create       = */ NULL,
    /* .graph_plan_free         = */ NULL,
    /* .graph_plan_update       = */ NULL,
    /* .graph_plan_compute      = */ NULL,
    /* .graph_compute           = */ ggml_backend_cuda_graph_compute,
    /* .event_record            = */ ggml_backend_cuda_event_record,
    /* .event_wait              = */ ggml_backend_cuda_event_wait,
};

static ggml_guid_t ggml_backend_cuda_guid() {
    static ggml_guid guid = { 0x2c, 0xdd, 0xe8, 0x1c, 0x65, 0xb3, 0x65, 0x73, 0x6a, 0x12, 0x88, 0x61, 0x1c, 0xc9, 0xdc, 0x25 };
    return &guid;
}

bool ggml_backend_is_cuda(ggml_backend_t backend) {
    return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cuda_guid());
}

int ggml_backend_cuda_get_device_count() {
    return ggml_cuda_info().device_count;
}

void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size) {
    cudaDeviceProp prop;
    CUDA_CHECK(cudaGetDeviceProperties(&prop, device));
    snprintf(description, description_size, "%s", prop.name);
}

void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total) {
    ggml_cuda_set_device(device);

    CUDA_CHECK(cudaMemGetInfo(free, total));
}

bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size) {
    if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) {
        return false;
    }

#if CUDART_VERSION >= 11100 || defined(GGML_USE_MUSA)
    cudaError_t err = cudaHostRegister(buffer, size, cudaHostRegisterPortable | cudaHostRegisterReadOnly);
    if (err != cudaSuccess) {
        // clear the error
        cudaGetLastError();

        GGML_LOG_DEBUG("%s: failed to register %.2f MiB of pinned memory: %s\n", __func__,
                           size / 1024.0 / 1024.0, cudaGetErrorString(err));
        return false;
    }
    return true;
#else
    return false;
#endif
}

void ggml_backend_cuda_unregister_host_buffer(void * buffer) {
    if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) {
        return;
    }

    cudaError_t err = cudaHostUnregister(buffer);
    if (err != cudaSuccess) {
        // clear the error
        cudaGetLastError();
    }
}


// backend device

struct ggml_backend_cuda_device_context {
    int device;
    std::string name;
    std::string description;
};

static const char * ggml_backend_cuda_device_get_name(ggml_backend_dev_t dev) {
    ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
    return ctx->name.c_str();
}

static const char * ggml_backend_cuda_device_get_description(ggml_backend_dev_t dev) {
    ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
    return ctx->description.c_str();
}

static void ggml_backend_cuda_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
    ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
    ggml_cuda_set_device(ctx->device);
    CUDA_CHECK(cudaMemGetInfo(free, total));
}

static enum ggml_backend_dev_type ggml_backend_cuda_device_get_type(ggml_backend_dev_t dev) {
    GGML_UNUSED(dev);
    return GGML_BACKEND_DEVICE_TYPE_GPU;
}

static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_backend_dev_props * props) {
    props->name        = ggml_backend_cuda_device_get_name(dev);
    props->description = ggml_backend_cuda_device_get_description(dev);
    props->type        = ggml_backend_cuda_device_get_type(dev);
    ggml_backend_cuda_device_get_memory(dev, &props->memory_free, &props->memory_total);

    bool host_buffer = getenv("GGML_CUDA_NO_PINNED") == nullptr;
#ifdef GGML_CUDA_NO_PEER_COPY
    bool events = false;
#else
    bool events = true;
#endif

    props->caps = {
        /* .async                 = */ true,
        /* .host_buffer           = */ host_buffer,
        /* .buffer_from_host_ptr  = */ false,
        /* .events                = */ events,
    };
}

static ggml_backend_t ggml_backend_cuda_device_init_backend(ggml_backend_dev_t dev, const char * params) {
    GGML_UNUSED(params);
    ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
    return ggml_backend_cuda_init(ctx->device);
}

static ggml_backend_buffer_type_t ggml_backend_cuda_device_get_buffer_type(ggml_backend_dev_t dev) {
    ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
    return ggml_backend_cuda_buffer_type(ctx->device);
}

static ggml_backend_buffer_type_t ggml_backend_cuda_device_get_host_buffer_type(ggml_backend_dev_t dev) {
    GGML_UNUSED(dev);
    return ggml_backend_cuda_host_buffer_type();
}

// TODO: move these functions here
static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
    ggml_backend_cuda_device_context * dev_ctx = (ggml_backend_cuda_device_context *) dev->context;

    // split buffers can only be used with GGML_OP_MUL_MAT
    if (op->op != GGML_OP_MUL_MAT) {
        for (int i = 0; i < GGML_MAX_SRC; i++) {
            if (op->src[i] && op->src[i]->buffer && ggml_backend_buft_is_cuda_split(op->src[i]->buffer->buft)) {
                return false;
            }
        }
    }

    // check if all the sources are allocated on this device
    for (int i = 0; i < GGML_MAX_SRC; i++) {
        if (op->src[i] && op->src[i]->buffer && ggml_backend_buft_is_cuda(op->src[i]->buffer->buft)) {
            ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)op->src[i]->buffer->buft->context;
            if (buft_ctx->device != dev_ctx->device) {
                return false;
            }
        }
    }

    switch (op->op) {
        case GGML_OP_UNARY:
            switch (ggml_get_unary_op(op)) {
                case GGML_UNARY_OP_NEG:
                case GGML_UNARY_OP_STEP:
                case GGML_UNARY_OP_GELU:
                case GGML_UNARY_OP_SILU:
                case GGML_UNARY_OP_RELU:
                case GGML_UNARY_OP_SIGMOID:
                case GGML_UNARY_OP_HARDSIGMOID:
                case GGML_UNARY_OP_HARDSWISH:
                case GGML_UNARY_OP_GELU_QUICK:
                case GGML_UNARY_OP_TANH:
                case GGML_UNARY_OP_EXP:
                    return ggml_is_contiguous(op->src[0]);
                default:
                    return false;
            }
            break;
        case GGML_OP_MUL_MAT:
        case GGML_OP_MUL_MAT_ID:
            {
                struct ggml_tensor * a = op->src[0];
                struct ggml_tensor * b = op->src[1];
                if (b->type == GGML_TYPE_F16 && a->type != GGML_TYPE_F16) {
                    return false;
                }
                if (op->op == GGML_OP_MUL_MAT && a->ne[3] != b->ne[3]) {
                    return false;
                }
#ifdef GGML_USE_MUSA
                if (b->type == GGML_TYPE_F16 && b->ne[2]*b->ne[3] > 1 &&
                    !ggml_is_transposed(a) && !ggml_is_transposed(b)) {
                    return false;
                }
#endif // GGML_USE_MUSA
                switch (a->type) {
                    case GGML_TYPE_F32:
                    case GGML_TYPE_F16:
                    case GGML_TYPE_Q4_0:
                    case GGML_TYPE_Q4_1:
                    case GGML_TYPE_Q5_0:
                    case GGML_TYPE_Q5_1:
                    case GGML_TYPE_Q8_0:
                    case GGML_TYPE_Q2_K:
                    case GGML_TYPE_Q3_K:
                    case GGML_TYPE_Q4_K:
                    case GGML_TYPE_Q5_K:
                    case GGML_TYPE_Q6_K:
                    case GGML_TYPE_Q8_K:
                    case GGML_TYPE_IQ1_M:
                    case GGML_TYPE_IQ1_S:
                    case GGML_TYPE_IQ2_S:
                    case GGML_TYPE_IQ2_XS:
                    case GGML_TYPE_IQ2_XXS:
                    case GGML_TYPE_IQ3_S:
                    case GGML_TYPE_IQ3_XXS:
                    case GGML_TYPE_IQ4_NL:
                    case GGML_TYPE_IQ4_XS:
#ifdef GGML_USE_MUSA
                        if (a->type == GGML_TYPE_Q3_K) {
                            return false;
                        }
#endif // GGML_USE_MUSA
                        return true;
                    default:
                        return false;
                }
            } break;
        case GGML_OP_OUT_PROD:
            return op->type == GGML_TYPE_F32 && op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->ne[2] == 1 && op->ne[3] == 1;
        case GGML_OP_GET_ROWS:
            {
                switch (op->src[0]->type) {
                    case GGML_TYPE_F16:
                    case GGML_TYPE_F32:
                    case GGML_TYPE_Q4_0:
                    case GGML_TYPE_Q4_1:
                    case GGML_TYPE_Q5_0:
                    case GGML_TYPE_Q5_1:
                    case GGML_TYPE_Q8_0:
                        return true;
                    default:
                        return false;
                }
            } break;
        case GGML_OP_CPY:
            {
                ggml_type src0_type = op->src[0]->type;
                ggml_type src1_type = op->src[1]->type;
                if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
                    return true;
                }
                if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
                    return true;
                }
                if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q8_0) {
                    return true;
                }
                if (src0_type == GGML_TYPE_Q8_0 && src1_type == GGML_TYPE_F32) {
                    return true;
                }
                if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_0) {
                    return true;
                }
                if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_1) {
                    return true;
                }
                if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q5_0) {
                    return true;
                }
                if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q5_1) {
                    return true;
                }
                if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_IQ4_NL) {
                    return true;
                }
                if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
                    return true;
                }
                if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
                    return true;
                }
                if (src0_type == src1_type && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1])) {
                    return true;
                }
                return false;
            } break;
        case GGML_OP_DUP:
            {
                ggml_type src0_type = op->src[0]->type;
                return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16;
            } break;
        case GGML_OP_ARGMAX:
        case GGML_OP_COUNT_EQUAL:
            {
                return true;
            } break;
        case GGML_OP_REPEAT:
            {
                ggml_type src0_type = op->src[0]->type;
                return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16;
            } break;
        case GGML_OP_REPEAT_BACK:
                return op->type == GGML_TYPE_F32 && op->src[0]->ne[3] == 1;
        case GGML_OP_CONCAT:
            {
                ggml_type src0_type = op->src[0]->type;
                return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16;
            } break;
        case GGML_OP_CONV_TRANSPOSE_1D:
            {
                ggml_type src0_type = op->src[0]->type;
                ggml_type src1_type = op->src[1]->type;
                if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
                    return true;
                }
                return false;
            } break;
        case GGML_OP_NORM:
        case GGML_OP_RMS_NORM:
            return ggml_is_contiguous(op->src[0]) && op->ne[0] % WARP_SIZE == 0;
            break;
        case GGML_OP_NONE:
        case GGML_OP_RESHAPE:
        case GGML_OP_VIEW:
        case GGML_OP_PERMUTE:
        case GGML_OP_TRANSPOSE:
        case GGML_OP_ADD:
        case GGML_OP_ADD1:
        case GGML_OP_SUB:
        case GGML_OP_MUL:
        case GGML_OP_DIV:
        case GGML_OP_SCALE:
        case GGML_OP_SQR:
        case GGML_OP_SQRT:
        case GGML_OP_SIN:
        case GGML_OP_COS:
        case GGML_OP_CLAMP:
            return true;
        case GGML_OP_CONT:
            return op->src[0]->type != GGML_TYPE_BF16;
        case GGML_OP_DIAG_MASK_INF:
        case GGML_OP_SOFT_MAX:
            return true;
        case GGML_OP_ROPE:
            return ggml_is_contiguous(op->src[0]);
        case GGML_OP_IM2COL:
        case GGML_OP_POOL_2D:
        case GGML_OP_SUM:
        case GGML_OP_SUM_ROWS:
        case GGML_OP_ARGSORT:
        case GGML_OP_ACC:
        case GGML_OP_GROUP_NORM:
        case GGML_OP_UPSCALE:
        case GGML_OP_PAD:
        case GGML_OP_ARANGE:
        case GGML_OP_TIMESTEP_EMBEDDING:
        case GGML_OP_LEAKY_RELU:
        case GGML_OP_RWKV_WKV:
            return true;
        case GGML_OP_FLASH_ATTN_EXT: {
#ifndef FLASH_ATTN_AVAILABLE
            return false;
#endif
            if (op->src[0]->ne[0] ==  64 && op->src[1]->type == GGML_TYPE_F16) {
                return true;
            }
            if (op->src[0]->ne[0] == 128) {
                return true;
            }
            if (op->src[0]->ne[0] == 256 && op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16) {
                return true;
            }
            const int cc = ggml_cuda_info().devices[dev_ctx->device].cc;
            return cc >= CC_VOLTA && cc < CC_OFFSET_AMD && op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16;
        }
        case GGML_OP_CROSS_ENTROPY_LOSS:
        case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
        case GGML_OP_OPT_STEP_ADAMW:
            return true;
        default:
            return false;
    }
}

static bool ggml_backend_cuda_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
    return (ggml_backend_buft_is_cuda(buft) || ggml_backend_buft_is_cuda_split(buft)) && buft->device == dev;
}

static int64_t get_op_batch_size(const ggml_tensor * op) {
    switch (op->op) {
        case GGML_OP_GET_ROWS:
            return 0;
        case GGML_OP_MUL_MAT:
            return op->ne[1];
        case GGML_OP_MUL_MAT_ID:
        case GGML_OP_ROPE:
            return op->ne[2];
        default:
            return ggml_nrows(op);
    }
}

static bool ggml_backend_cuda_device_offload_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
    const int min_batch_size = 32;

    return get_op_batch_size(op) >= min_batch_size;

    GGML_UNUSED(dev);
}

static ggml_backend_event_t ggml_backend_cuda_device_event_new(ggml_backend_dev_t dev) {
#ifdef GGML_CUDA_NO_PEER_COPY
    return nullptr;
#else
    ggml_backend_cuda_device_context * dev_ctx = (ggml_backend_cuda_device_context *)dev->context;

    ggml_cuda_set_device(dev_ctx->device);

    cudaEvent_t event;
    CUDA_CHECK(cudaEventCreateWithFlags(&event, cudaEventDisableTiming));

    return new ggml_backend_event {
        /* .device  = */ dev,
        /* .context = */ event,
    };
#endif
}

static void ggml_backend_cuda_device_event_free(ggml_backend_dev_t dev, ggml_backend_event_t event) {
    GGML_UNUSED(dev);

    CUDA_CHECK(cudaEventDestroy((cudaEvent_t)event->context));
    delete event;
}

static void ggml_backend_cuda_device_event_synchronize(ggml_backend_dev_t dev, ggml_backend_event_t event) {
    GGML_UNUSED(dev);
    CUDA_CHECK(cudaEventSynchronize((cudaEvent_t)event->context));
}

static const ggml_backend_device_i ggml_backend_cuda_device_interface = {
    /* .get_name                = */ ggml_backend_cuda_device_get_name,
    /* .get_description         = */ ggml_backend_cuda_device_get_description,
    /* .get_memory              = */ ggml_backend_cuda_device_get_memory,
    /* .get_type                = */ ggml_backend_cuda_device_get_type,
    /* .get_props               = */ ggml_backend_cuda_device_get_props,
    /* .init_backend            = */ ggml_backend_cuda_device_init_backend,
    /* .get_buffer_type         = */ ggml_backend_cuda_device_get_buffer_type,
    /* .get_host_buffer_type    = */ ggml_backend_cuda_device_get_host_buffer_type,
    /* .buffer_from_host_ptr    = */ NULL,
    /* .supports_op             = */ ggml_backend_cuda_device_supports_op,
    /* .supports_buft           = */ ggml_backend_cuda_device_supports_buft,
    /* .offload_op              = */ ggml_backend_cuda_device_offload_op,
    /* .event_new               = */ ggml_backend_cuda_device_event_new,
    /* .event_free              = */ ggml_backend_cuda_device_event_free,
    /* .event_synchronize       = */ ggml_backend_cuda_device_event_synchronize,
};

// backend reg

struct ggml_backend_cuda_reg_context {
    std::vector<ggml_backend_dev_t> devices;
};

static const char * ggml_backend_cuda_reg_get_name(ggml_backend_reg_t reg) {
    GGML_UNUSED(reg);
    return GGML_CUDA_NAME;
}

static size_t ggml_backend_cuda_reg_get_device_count(ggml_backend_reg_t reg) {
    ggml_backend_cuda_reg_context * ctx = (ggml_backend_cuda_reg_context *)reg->context;
    return ctx->devices.size();
}

static ggml_backend_dev_t ggml_backend_cuda_reg_get_device(ggml_backend_reg_t reg, size_t index) {
    ggml_backend_cuda_reg_context * ctx = (ggml_backend_cuda_reg_context *)reg->context;
    GGML_ASSERT(index < ctx->devices.size());
    return ctx->devices[index];
}

static void * ggml_backend_cuda_reg_get_proc_address(ggml_backend_reg_t reg, const char * name) {
    GGML_UNUSED(reg);
    if (strcmp(name, "ggml_backend_split_buffer_type") == 0) {
        return (void *)ggml_backend_cuda_split_buffer_type;
    }
    if (strcmp(name, "ggml_backend_register_host_buffer") == 0) {
        return (void *)ggml_backend_cuda_register_host_buffer;
    }
    if (strcmp(name, "ggml_backend_unregister_host_buffer") == 0) {
        return (void *)ggml_backend_cuda_unregister_host_buffer;
    }
    return nullptr;
}

static const ggml_backend_reg_i ggml_backend_cuda_reg_interface = {
    /* .get_name          = */ ggml_backend_cuda_reg_get_name,
    /* .get_device_count  = */ ggml_backend_cuda_reg_get_device_count,
    /* .get_device_get    = */ ggml_backend_cuda_reg_get_device,
    /* .get_proc_address  = */ ggml_backend_cuda_reg_get_proc_address,
};

// backend registry
ggml_backend_reg_t ggml_backend_cuda_reg() {
    static ggml_backend_reg reg;
    static bool initialized = false;

    {
        static std::mutex mutex;
        std::lock_guard<std::mutex> lock(mutex);
        if (!initialized) {
            ggml_backend_cuda_reg_context * ctx = new ggml_backend_cuda_reg_context;

            for (int i = 0; i < ggml_cuda_info().device_count; i++) {
                ggml_backend_cuda_device_context * dev_ctx = new ggml_backend_cuda_device_context;
                dev_ctx->device = i;
                dev_ctx->name = GGML_CUDA_NAME + std::to_string(i);

                ggml_cuda_set_device(i);
                cudaDeviceProp prop;
                CUDA_CHECK(cudaGetDeviceProperties(&prop, i));
                dev_ctx->description = prop.name;

                ggml_backend_dev_t dev = new ggml_backend_device {
                    /* .interface = */ ggml_backend_cuda_device_interface,
                    /* .reg       = */ &reg,
                    /* .context   = */ dev_ctx
                };
                ctx->devices.push_back(dev);
            }

            reg = ggml_backend_reg {
                /* .interface = */ ggml_backend_cuda_reg_interface,
                /* .context   = */ ctx
            };
        }

        initialized = true;
    }

    return &reg;
}

ggml_backend_t ggml_backend_cuda_init(int device) {
    if (device < 0 || device >= ggml_backend_cuda_get_device_count()) {
        GGML_LOG_ERROR("%s: invalid device %d\n", __func__, device);
        return nullptr;
    }

    ggml_backend_cuda_context * ctx = new ggml_backend_cuda_context(device);
    if (ctx == nullptr) {
        GGML_LOG_ERROR("%s: failed to allocate context\n", __func__);
        return nullptr;
    }

    ggml_backend_t cuda_backend = new ggml_backend {
        /* .guid      = */ ggml_backend_cuda_guid(),
        /* .interface = */ ggml_backend_cuda_interface,
        /* .device    = */ ggml_backend_reg_dev_get(ggml_backend_cuda_reg(), device),
        /* .context   = */ ctx,
    };

    return cuda_backend;
}