File size: 5,233 Bytes
57e3690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
//
// MIT license
// Copyright (C) 2024 Intel Corporation
// SPDX-License-Identifier: MIT
//

//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//

#include "im2col.hpp"

template <typename T>
static void im2col_kernel(
        const float *x, T *dst, int64_t batch_offset, int64_t offset_delta,
        int64_t IC, int64_t IW, int64_t IH, int64_t OH, int64_t OW, int64_t KW, int64_t KH,
        int64_t pelements, int64_t CHW, int s0, int s1, int p0, int p1, int d0, int d1,
        const sycl::nd_item<3> &item_ct1) {
    const int64_t work_group_size = item_ct1.get_local_range(2);
    const int64_t global_id = item_ct1.get_local_id(2) + work_group_size * item_ct1.get_group(2);

    // make each work-item deal with more elements since sycl global range can not exceed max int
    for (int64_t i = global_id; i < pelements; i += work_group_size * item_ct1.get_group_range(2)) {

        const int64_t ksize = OW * (KH > 1 ? KW : 1);
        const int64_t kx = i / ksize;
        const int64_t kd = kx * ksize;
        const int64_t ky = (i - kd) / OW;
        const int64_t ix = i % OW;

        const int64_t  oh = item_ct1.get_group(1);
        const int64_t  batch = item_ct1.get_group(0) / IC;
        const int64_t  ic = item_ct1.get_group(0) % IC;

        const int64_t iiw = ix * s0 + kx * d0 - p0;
        const int64_t iih = oh * s1 + ky * d1 - p1;

        const int64_t offset_dst =
            ((batch * OH + oh) * OW + ix) * CHW +
            (ic * (KW * KH) + ky * KW + kx);

        if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
            dst[offset_dst] =
                sycl::vec<float, 1>(0.0f)
                    .convert<sycl::half, sycl::rounding_mode::automatic>()[0];
        } else {
            const int64_t offset_src = ic * offset_delta + batch * batch_offset;
            dst[offset_dst] =
                sycl::vec<float, 1>(x[offset_src + iih * IW + iiw])
                    .convert<sycl::half, sycl::rounding_mode::automatic>()[0];
        }
    }
}

template <typename T>
static void im2col_sycl(
        const float *x, T *dst, int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW,
        int64_t KH, int64_t IC, int64_t batch, int64_t batch_offset, int64_t offset_delta,
        int s0, int s1, int p0, int p1, int d0, int d1,
        queue_ptr stream) {
    const int64_t parallel_elements = OW * KW * KH;
    const int64_t num_blocks = (parallel_elements + SYCL_IM2COL_BLOCK_SIZE - 1) / SYCL_IM2COL_BLOCK_SIZE;

    // decrease global range when it exceeds the max int
    int64_t local_size = downsample_sycl_global_range(batch * IC * OH * num_blocks, SYCL_IM2COL_BLOCK_SIZE);
    sycl::range<3> block_nums(batch * IC, OH, num_blocks);
    sycl::range<3> local_range(1, 1, local_size);

    {
        dpct::has_capability_or_fail(stream->get_device(),
                                     {sycl::aspect::fp16});

        stream->parallel_for(
            sycl::nd_range<3>(block_nums * local_range, local_range),
            [=](sycl::nd_item<3> item_ct1) {
                im2col_kernel(x, dst, batch_offset, offset_delta, IC, IW, IH, OH, OW, KW, KH,
                               parallel_elements, (IC * KH * KW), s0, s1, p0,
                               p1, d0, d1, item_ct1);
            });
    }
}

void ggml_sycl_op_im2col(
        ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
        ggml_tensor *dst, const float *src0_dd, const float *src1_dd, float *dst_dd,
        const queue_ptr &main_stream) {

    GGML_ASSERT(src0->type == GGML_TYPE_F16);
    GGML_ASSERT(src1->type == GGML_TYPE_F32);
    GGML_ASSERT(dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);

    const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
    const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
    const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
    const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
    const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
    const int32_t d1 = ((const int32_t*)(dst->op_params))[5];

    const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;

    const int64_t IC = src1->ne[is_2D ? 2 : 1];
    const int64_t IH = is_2D ? src1->ne[1] : 1;
    const int64_t IW =         src1->ne[0];

    const int64_t KH = is_2D ? src0->ne[1] : 1;
    const int64_t KW =         src0->ne[0];

    const int64_t OH = is_2D ? dst->ne[2] : 1;
    const int64_t OW =         dst->ne[1];

    const size_t delta_offset = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
    const int64_t batch = src1->ne[3];
    const size_t batch_offset = src1->nb[3] / 4; // nb is byte offset, src is type float32

    if (dst->type == GGML_TYPE_F16) {
        im2col_sycl(src1_dd, (sycl::half *)dst_dd, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
    } else {
        im2col_sycl(src1_dd, (float *)dst_dd, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
    }

    (void) src0;
    (void) src0_dd;
}