File size: 4,572 Bytes
57e3690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#version 450

#include "mul_mat_vec_base.comp"

layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;

shared FLOAT_TYPE tmp[32];

void main() {
    const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z;

    uint a_offset, b_offset, d_offset;
    get_offsets(a_offset, b_offset, d_offset);

    const uint num_blocks_per_row = p.ncols / QUANT_K;
    const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row;

    const uint tid = gl_LocalInvocationID.x/K_QUANTS_PER_ITERATION;  // 0...31 or 0...16
    const uint ix  = gl_LocalInvocationID.x%K_QUANTS_PER_ITERATION;  // 0 or 0, 1

    const uint step = 16/K_QUANTS_PER_ITERATION;            // 16 or 8

    const uint v_im = tid/step;                             // 0 or 1. 0 computes 0..., 1 computes 128...
    const uint v_in = tid - step*v_im;                      // 0...15 or 0...7

    const uint l0 = K_QUANTS_PER_ITERATION*v_in;            // 0...15
    const uint q_offset = 32*v_im + l0;
    const uint s_offset = 8*v_im;
    const uint y_offset = 128*v_im + l0;

    tmp[16 * ix + tid] = FLOAT_TYPE(0.0); // partial sum for thread in warp

    [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
        const uint y_idx = i * QUANT_K + y_offset;

        const FLOAT_TYPE dall = FLOAT_TYPE(data_a[ib0 + i].d.x);
        const FLOAT_TYPE dmin = FLOAT_TYPE(data_a[ib0 + i].d.y);

        FLOAT_TYPE sum1 = FLOAT_TYPE(0.0);
        FLOAT_TYPE sum2 = FLOAT_TYPE(0.0);
        for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
            sum1 = fma(FLOAT_TYPE(data_b[b_offset + y_idx + l +  0]), FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 0) & 3),
                   fma(FLOAT_TYPE(data_b[b_offset + y_idx + l + 16]), FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 1] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 0) & 3),
                   fma(FLOAT_TYPE(data_b[b_offset + y_idx + l + 32]), FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 2) & 3),
                   fma(FLOAT_TYPE(data_b[b_offset + y_idx + l + 48]), FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 3] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 2) & 3),
                   fma(FLOAT_TYPE(data_b[b_offset + y_idx + l + 64]), FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 4) & 3),
                   fma(FLOAT_TYPE(data_b[b_offset + y_idx + l + 80]), FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 5] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 4) & 3),
                   fma(FLOAT_TYPE(data_b[b_offset + y_idx + l + 96]), FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 6) & 3),
                   fma(FLOAT_TYPE(data_b[b_offset + y_idx + l +112]), FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 7] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 6) & 3), sum1))))))));
            sum2 = fma(FLOAT_TYPE(data_b[b_offset + y_idx + l +  0]), FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 0] >> 4) & 0xF),
                   fma(FLOAT_TYPE(data_b[b_offset + y_idx + l + 16]), FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 1] >> 4) & 0xF),
                   fma(FLOAT_TYPE(data_b[b_offset + y_idx + l + 32]), FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 2] >> 4) & 0xF),
                   fma(FLOAT_TYPE(data_b[b_offset + y_idx + l + 48]), FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 3] >> 4) & 0xF),
                   fma(FLOAT_TYPE(data_b[b_offset + y_idx + l + 64]), FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 4] >> 4) & 0xF),
                   fma(FLOAT_TYPE(data_b[b_offset + y_idx + l + 80]), FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 5] >> 4) & 0xF),
                   fma(FLOAT_TYPE(data_b[b_offset + y_idx + l + 96]), FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 6] >> 4) & 0xF),
                   fma(FLOAT_TYPE(data_b[b_offset + y_idx + l +112]), FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 7] >> 4) & 0xF), sum2))))))));
        }
        const uint tmp_idx = 16 * ix + tid;
        tmp[tmp_idx] = fma(dall, sum1, fma(-dmin, sum2, tmp[tmp_idx]));
    }

    // sum up partial sums and write back result
    barrier();
    [[unroll]] for (uint s = 16; s > 0; s >>= 1) {
        if (tid < s) {
            tmp[tid] += tmp[tid + s];
        }
        barrier();
    }
    if (tid == 0) {
        data_d[d_offset + row] = D_TYPE(tmp[0]);
    }
}