File size: 21,611 Bytes
57e3690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
#version 450

#extension GL_EXT_control_flow_attributes : enable
#extension GL_EXT_shader_16bit_storage : require

#ifdef FLOAT16
#extension GL_EXT_shader_explicit_arithmetic_types_float16 : require
#endif

#ifdef MUL_MAT_ID
#extension GL_EXT_shader_explicit_arithmetic_types_int16 : require
#endif

#include "types.comp"

#ifndef LOAD_VEC_A
#define LOAD_VEC_A 1
#endif
#ifndef LOAD_VEC_B
#define LOAD_VEC_B 1
#endif

layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;

layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
layout (binding = 1) readonly buffer B {B_TYPE data_b[];};
layout (binding = 2) writeonly buffer D {D_TYPE data_d[];};

#ifdef MUL_MAT_ID
layout (binding = 3) readonly buffer IDS {int data_ids[];};
#endif

layout (push_constant) uniform parameter
{
    uint M;
    uint N;
    uint K;
    uint stride_a;
    uint stride_b;
    uint stride_d;

    uint batch_stride_a;
    uint batch_stride_b;
    uint batch_stride_d;

#ifdef MUL_MAT_ID
    uint nei0;
    uint nei1;
    uint nbi1;
    uint ne11;
#else
    uint k_split;
    uint ne02;
    uint ne12;
    uint broadcast2;
    uint broadcast3;
#endif
} p;

layout (constant_id = 1) const uint BM = 64;
layout (constant_id = 2) const uint BN = 64;
layout (constant_id = 3) const uint BK = 16;  // Assumed to be 32 if working with a quant
layout (constant_id = 4) const uint WM = 32;
layout (constant_id = 5) const uint WN = 32;
layout (constant_id = 6) const uint WMITER = 2;
layout (constant_id = 7) const uint TM = 4;
layout (constant_id = 8) const uint TN = 2;
layout (constant_id = 9) const uint WARP = 32;

shared FLOAT_TYPE buf_a[BM * (BK+1)];
shared FLOAT_TYPE buf_b[BN * (BK+1)];

#ifdef MUL_MAT_ID
shared u16vec2 row_ids[3072];
#endif

void main() {
#ifdef MUL_MAT_ID
    const uint expert_idx = gl_GlobalInvocationID.z;
#else
    const uint batch_idx = gl_GlobalInvocationID.z;

    const uint i13 = batch_idx / p.ne12;
    const uint i12 = batch_idx % p.ne12;

    const uint i03 = i13 / p.broadcast3;
    const uint i02 = i12 / p.broadcast2;

    const uint batch_idx_a = i03 * p.ne02 + i02;
#endif

    const uint blocks_m = (p.M + BM - 1) / BM;
    const uint ir = gl_WorkGroupID.x % blocks_m;
    const uint ik = gl_WorkGroupID.x / blocks_m;
    const uint ic = gl_WorkGroupID.y;

    const uint warp_i = gl_LocalInvocationID.x / WARP;
    const uint warp_r = warp_i % (BM / WM);
    const uint warp_c = warp_i / (BM / WM);

    const uint WNITER = (WM * WN) / (WARP * TM * TN * WMITER);
    const uint WSUBM = WM / WMITER;
    const uint WSUBN = WN / WNITER;

    const uint tiw = gl_LocalInvocationID.x % WARP;
    const uint tiwr = tiw % (WSUBM / TM);
    const uint tiwc = tiw / (WSUBM / TM);

    const uint loadr_a = gl_LocalInvocationID.x % (BK / LOAD_VEC_A);
    const uint loadc_a = gl_LocalInvocationID.x / (BK / LOAD_VEC_A);
    const uint loadr_b = gl_LocalInvocationID.x % (BK / LOAD_VEC_B);
    const uint loadc_b = gl_LocalInvocationID.x / (BK / LOAD_VEC_B);

    const uint loadstride_a = gl_WorkGroupSize.x * LOAD_VEC_A / BK;
    const uint loadstride_b = gl_WorkGroupSize.x * LOAD_VEC_B / BK;

#ifdef MUL_MAT_ID
    uint _ne1 = 0;
    for (uint ii1 = 0; ii1 < p.nei1; ii1++) {
        for (uint ii0 = 0; ii0 < p.nei0; ii0++) {
            if (data_ids[ii1*p.nbi1 + ii0] == expert_idx) {
                row_ids[_ne1] = u16vec2(ii0, ii1);
                _ne1++;
            }
        }
    }

    barrier();

    // Workgroup has no work
    if (ic * BN >= _ne1) return;
#endif

#ifdef MUL_MAT_ID
    const uint start_k = 0;
    const uint end_k = p.K;
#else
    const uint start_k = ik * p.k_split;
    const uint end_k = min(p.K, (ik + 1) * p.k_split);
#endif

    uint pos_a = (
#ifdef MUL_MAT_ID
        expert_idx * p.batch_stride_a +
#else
        batch_idx_a * p.batch_stride_a +
#endif
        ir * BM * p.stride_a + start_k) / LOAD_VEC_A;
#ifdef MUL_MAT_ID
    uint pos_b = 0;
#else
    uint pos_b = (batch_idx * p.batch_stride_b + ic * BN * p.stride_b + start_k) / LOAD_VEC_B;
#endif

    float sums[WMITER * TM * WNITER * TN];
    FLOAT_TYPE cache_a[WMITER * TM];
    FLOAT_TYPE cache_b[WNITER * TN];

    [[unroll]] for (uint i = 0; i < WMITER*TM*WNITER*TN; i++) {
        sums[i] = 0.0f;
    }

    [[unroll]] for (uint block = start_k; block < end_k; block += BK) {
        [[unroll]] for (uint l = 0; l < BM; l += loadstride_a) {

#if defined(DATA_A_F32) || defined(DATA_A_F16)
#if LOAD_VEC_A == 8
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
            const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
            buf_a[buf_idx    ] = FLOAT_TYPE(data_a[idx][0].x);
            buf_a[buf_idx + 1] = FLOAT_TYPE(data_a[idx][0].y);
            buf_a[buf_idx + 2] = FLOAT_TYPE(data_a[idx][0].z);
            buf_a[buf_idx + 3] = FLOAT_TYPE(data_a[idx][0].w);
            buf_a[buf_idx + 4] = FLOAT_TYPE(data_a[idx][1].x);
            buf_a[buf_idx + 5] = FLOAT_TYPE(data_a[idx][1].y);
            buf_a[buf_idx + 6] = FLOAT_TYPE(data_a[idx][1].z);
            buf_a[buf_idx + 7] = FLOAT_TYPE(data_a[idx][1].w);
#elif LOAD_VEC_A == 4
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
            const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
            buf_a[buf_idx    ] = FLOAT_TYPE(data_a[idx].x);
            buf_a[buf_idx + 1] = FLOAT_TYPE(data_a[idx].y);
            buf_a[buf_idx + 2] = FLOAT_TYPE(data_a[idx].z);
            buf_a[buf_idx + 3] = FLOAT_TYPE(data_a[idx].w);
#else
            if (ir * BM + loadc_a + l < p.M && block + loadr_a < end_k) {
                buf_a[(loadc_a + l) * (BK+1) + loadr_a] = FLOAT_TYPE(data_a[pos_a + (loadc_a + l) * p.stride_a + loadr_a]);
            } else {
                buf_a[(loadc_a + l) * (BK+1) + loadr_a] = FLOAT_TYPE(0.0f);
            }
#endif
#elif defined(DATA_A_Q4_0)
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
            const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a;

            const uint ib = idx / 16;
            const uint iqs = idx & 0xF;

            const float d = float(data_a[ib].d);
            const uint vui = uint(data_a[ib].qs[iqs]);
            const vec2 v = (vec2(vui & 0xF, vui >> 4) - 8.0f) * d;

            buf_a[buf_idx     ] = FLOAT_TYPE(v.x);
            buf_a[buf_idx + 16] = FLOAT_TYPE(v.y);
#elif defined(DATA_A_Q4_1)
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
            const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a;

            const uint ib = idx / 16;
            const uint iqs = idx & 0xF;

            const float d = float(data_a[ib].d);
            const float m = float(data_a[ib].m);
            const uint vui = uint(data_a[ib].qs[iqs]);
            const vec2 v = vec2(vui & 0xF, vui >> 4) * d + m;

            buf_a[buf_idx     ] = FLOAT_TYPE(v.x);
            buf_a[buf_idx + 16] = FLOAT_TYPE(v.y);
#elif defined(DATA_A_Q5_0)
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
            const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a;

            const uint ib = idx / 16;
            const uint iqs = idx & 0xF;

            const float d = float(data_a[ib].d);
            const uint uint_qh = uint(data_a[ib].qh[1]) << 16 | data_a[ib].qh[0];
            const ivec2 qh = ivec2(((uint_qh >> iqs) << 4) & 0x10, (uint_qh >> (iqs + 12)) & 0x10);
            const uint vui = uint(data_a[ib].qs[iqs]);
            const vec2 v = (vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y) - 16.0f) * d;

            buf_a[buf_idx     ] = FLOAT_TYPE(v.x);
            buf_a[buf_idx + 16] = FLOAT_TYPE(v.y);
#elif defined(DATA_A_Q5_1)
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
            const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a;

            const uint ib = idx / 16;
            const uint iqs = idx & 0xF;

            const float d = float(data_a[ib].d);
            const float m = float(data_a[ib].m);
            const uint uint_qh = data_a[ib].qh;
            const ivec2 qh = ivec2(((uint_qh >> iqs) << 4) & 0x10, (uint_qh >> (iqs + 12)) & 0x10);
            const uint vui = uint(data_a[ib].qs[iqs]);
            const vec2 v = vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y) * d + m;

            buf_a[buf_idx     ] = FLOAT_TYPE(v.x);
            buf_a[buf_idx + 16] = FLOAT_TYPE(v.y);
#elif defined(DATA_A_Q8_0)
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
            const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;

            const uint ib = idx / 16;
            const uint iqs = (idx & 0xF) * 2;

            const float d = float(data_a[ib].d);
            const vec2 v = vec2(int(data_a[ib].qs[iqs]), int(data_a[ib].qs[iqs + 1])) * d;

            buf_a[buf_idx    ] = FLOAT_TYPE(v.x);
            buf_a[buf_idx + 1] = FLOAT_TYPE(v.y);
#elif defined(DATA_A_Q2_K)
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
            const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;

            const uint ib = idx / 128;                         // 2 values per idx
            const uint iqs = idx % 128;                        // 0..127

            const uint qsi = (iqs / 64) * 32 + (iqs % 16) * 2; // 0,2,4..30
            const uint scalesi = iqs / 8;                      // 0..15
            const uint qsshift = ((iqs % 64) / 16) * 2;        // 0,2,4,6

            const uvec2 qs = uvec2(data_a[ib].qs[qsi], data_a[ib].qs[qsi + 1]);
            const uint scales = data_a[ib].scales[scalesi];
            const vec2 d = vec2(data_a[ib].d);

            const vec2 v = d.x * float(scales & 0xF) * vec2((qs >> qsshift) & 3) - d.y * float(scales >> 4);

            buf_a[buf_idx    ] = FLOAT_TYPE(v.x);
            buf_a[buf_idx + 1] = FLOAT_TYPE(v.y);
#elif defined(DATA_A_Q3_K)
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
            const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;

            const uint ib = idx / 128;                   // 2 values per idx
            const uint iqs = idx % 128;                  // 0..127

            const uint n = iqs / 64;                     // 0,1
            const uint qsi = n * 32 + (iqs % 16) * 2;    // 0,2,4..62
            const uint hmi =          (iqs % 16) * 2;    // 0,2,4..30
            const uint j = (iqs % 64) / 4;               // 0..3
            const uint is = iqs / 8;                     // 0..15
            const uint halfsplit = ((iqs % 64) / 16);    // 0,1,2,3
            const uint qsshift = halfsplit * 2;          // 0,2,4,6
            const uint m = 1 << (4 * n + halfsplit);     // 1,2,4,8,16,32,64,128

            const int8_t us = int8_t(is <  4 ? (data_a[ib].scales[is-0] & 0xF) | (((data_a[ib].scales[is+8] >> 0) & 3) << 4) :
                                    is <  8 ? (data_a[ib].scales[is-0] & 0xF) | (((data_a[ib].scales[is+4] >> 2) & 3) << 4) :
                                    is < 12 ? (data_a[ib].scales[is-8] >>  4) | (((data_a[ib].scales[is+0] >> 4) & 3) << 4) :
                                            (data_a[ib].scales[is-8] >>  4) | (((data_a[ib].scales[is-4] >> 6) & 3) << 4));
            const float dl = float(data_a[ib].d) * float(us - 32);

            buf_a[buf_idx    ] = FLOAT_TYPE(dl * float(int8_t((data_a[ib].qs[qsi    ] >> qsshift) & 3) - (((data_a[ib].hmask[hmi    ] & m) != 0) ? 0 : 4)));
            buf_a[buf_idx + 1] = FLOAT_TYPE(dl * float(int8_t((data_a[ib].qs[qsi + 1] >> qsshift) & 3) - (((data_a[ib].hmask[hmi + 1] & m) != 0) ? 0 : 4)));
#elif defined(DATA_A_Q4_K)
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
            const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;

            const uint ib = idx / 128;                 // 2 values per idx
            const uint iqs = idx % 128;                // 0..127

            const uint n = iqs / 32;                   // 0,1,2,3
            const uint b = (iqs % 32) / 16;            // 0,1
            const uint is = 2 * n + b;                 // 0..7
            const uint qsi = n * 32 + (iqs % 16) * 2;  // 0,2,4..126

            const vec2 loadd = vec2(data_a[ib].d);

            uint8_t sc;
            uint8_t mbyte;
            if (is < 4) {
                sc    = uint8_t(data_a[ib].scales[is    ] & 63);
                mbyte = uint8_t(data_a[ib].scales[is + 4] & 63);
            } else {
                sc    = uint8_t((data_a[ib].scales[is + 4] & 0xF) | ((data_a[ib].scales[is - 4] >> 6) << 4));
                mbyte = uint8_t((data_a[ib].scales[is + 4] >>  4) | ((data_a[ib].scales[is    ] >> 6) << 4));
            }
            const float d = loadd.x * sc;
            const float m = -loadd.y * mbyte;

            buf_a[buf_idx    ] = FLOAT_TYPE(fma(d, float((data_a[ib].qs[qsi    ] >> (b * 4)) & 0xF), m));
            buf_a[buf_idx + 1] = FLOAT_TYPE(fma(d, float((data_a[ib].qs[qsi + 1] >> (b * 4)) & 0xF), m));
#elif defined(DATA_A_Q5_K)
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
            const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;

            const uint ib = idx / 128;                 // 2 values per idx
            const uint iqs = idx % 128;                // 0..127

            const uint n = iqs / 32;                   // 0,1,2,3
            const uint b = (iqs % 32) / 16;            // 0,1
            const uint is = 2 * n + b;                 // 0..7
            const uint qsi = n * 32 + (iqs % 16) * 2;  // 0,2,4..126
            const uint qhi = (iqs % 16) * 2;           // 0,2,4..30

            const uint8_t hm = uint8_t(1 << (iqs / 16));

            const vec2 loadd = vec2(data_a[ib].d);

            uint8_t sc;
            uint8_t mbyte;
            if (is < 4) {
                sc    = uint8_t(data_a[ib].scales[is    ] & 63);
                mbyte = uint8_t(data_a[ib].scales[is + 4] & 63);
            } else {
                sc    = uint8_t((data_a[ib].scales[is + 4] & 0xF) | ((data_a[ib].scales[is - 4] >> 6) << 4));
                mbyte = uint8_t((data_a[ib].scales[is + 4] >>  4) | ((data_a[ib].scales[is    ] >> 6) << 4));
            }
            const float d = loadd.x * sc;
            const float m = -loadd.y * mbyte;

            buf_a[buf_idx    ] = FLOAT_TYPE(fma(d, float((data_a[ib].qs[qsi    ] >> (b * 4)) & 0xF) + float((data_a[ib].qh[qhi    ] & hm) != 0 ? 16 : 0), m));
            buf_a[buf_idx + 1] = FLOAT_TYPE(fma(d, float((data_a[ib].qs[qsi + 1] >> (b * 4)) & 0xF) + float((data_a[ib].qh[qhi + 1] & hm) != 0 ? 16 : 0), m));
#elif defined(DATA_A_Q6_K)
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
            const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;

            const uint ib = idx / 128;                  // 2 values per idx
            const uint iqs = idx % 128;                 // 0..127

            const uint n = iqs / 64;                    // 0,1
            const uint b = (iqs % 64) / 32;             // 0,1
            const uint is_b = (iqs % 16) / 8;           // 0,1
            const uint qhshift = ((iqs % 64) / 16) * 2; // 0,2,4,6
            const uint is = 8 * n + qhshift + is_b;     // 0..15
            const uint qsi = n * 64 + (iqs % 32) * 2;   // 0,2,4..126
            const uint qhi = n * 32 + (iqs % 16) * 2;   // 0,2,4..62

            const float dscale = float(data_a[ib].d) * float(data_a[ib].scales[is]);

            buf_a[buf_idx    ] = FLOAT_TYPE(dscale * float(int8_t(((data_a[ib].ql[qsi    ] >> (b * 4)) & 0xF) | (((data_a[ib].qh[qhi    ] >> qhshift) & 3) << 4)) - 32));
            buf_a[buf_idx + 1] = FLOAT_TYPE(dscale * float(int8_t(((data_a[ib].ql[qsi + 1] >> (b * 4)) & 0xF) | (((data_a[ib].qh[qhi + 1] >> qhshift) & 3) << 4)) - 32));
#elif defined(DATA_A_IQ4_NL)
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
            const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a;

            const uint ib = idx / 16;
            const uint iqs = idx & 0xF;

            const float d = float(data_a[ib].d);
            const uint vui = uint(data_a[ib].qs[iqs]);
            const vec2 v = vec2(kvalues_iq4nl[vui & 0xF], kvalues_iq4nl[vui >> 4]) * d;

            buf_a[buf_idx     ] = FLOAT_TYPE(v.x);
            buf_a[buf_idx + 16] = FLOAT_TYPE(v.y);
#endif
        }
        [[unroll]] for (uint l = 0; l < BN; l += loadstride_b) {
#if LOAD_VEC_B == 8
#ifdef MUL_MAT_ID
            const u16vec2 row_idx = row_ids[ic * BN + loadc_b + l];
            const uint idx = pos_b + row_idx.y * p.batch_stride_b / LOAD_VEC_B + (row_idx.x % p.ne11) * p.stride_b / LOAD_VEC_B + loadr_b;
#else
            const uint idx = pos_b + (loadc_b + l) * p.stride_b / LOAD_VEC_B + loadr_b;
#endif
            const uint buf_idx = (loadc_b + l) * (BK+1) + loadr_b * LOAD_VEC_B;
            buf_b[buf_idx + 0] = FLOAT_TYPE(data_b[idx][0].x);
            buf_b[buf_idx + 1] = FLOAT_TYPE(data_b[idx][0].y);
            buf_b[buf_idx + 2] = FLOAT_TYPE(data_b[idx][0].z);
            buf_b[buf_idx + 3] = FLOAT_TYPE(data_b[idx][0].w);
            buf_b[buf_idx + 4] = FLOAT_TYPE(data_b[idx][1].x);
            buf_b[buf_idx + 5] = FLOAT_TYPE(data_b[idx][1].y);
            buf_b[buf_idx + 6] = FLOAT_TYPE(data_b[idx][1].z);
            buf_b[buf_idx + 7] = FLOAT_TYPE(data_b[idx][1].w);
#elif LOAD_VEC_B == 4
#ifdef MUL_MAT_ID
            const u16vec2 row_idx = row_ids[ic * BN + loadc_b + l];
            const uint idx = pos_b + row_idx.y * p.batch_stride_b / LOAD_VEC_B + (row_idx.x % p.ne11) * p.stride_b / LOAD_VEC_B + loadr_b;
#else
            const uint idx = pos_b + (loadc_b + l) * p.stride_b / LOAD_VEC_B + loadr_b;
#endif
            const uint buf_idx = (loadc_b + l) * (BK+1) + loadr_b * LOAD_VEC_B;
            buf_b[buf_idx + 0] = FLOAT_TYPE(data_b[idx].x);
            buf_b[buf_idx + 1] = FLOAT_TYPE(data_b[idx].y);
            buf_b[buf_idx + 2] = FLOAT_TYPE(data_b[idx].z);
            buf_b[buf_idx + 3] = FLOAT_TYPE(data_b[idx].w);
#elif !MUL_MAT_ID
            if (ic * BN + loadc_b + l < p.N && block + loadr_b < end_k) {
                buf_b[(loadc_b + l) * (BK+1) + loadr_b] = FLOAT_TYPE(data_b[pos_b + (loadc_b + l) * p.stride_b + loadr_b]);
            } else {
                buf_b[(loadc_b + l) * (BK+1) + loadr_b] = FLOAT_TYPE(0.0f);
            }
#else
            const uint row_i = ic * BN + loadc_b + l;
            if (row_i < _ne1) {
                const u16vec2 row_idx = row_ids[row_i];
                buf_b[(loadc_b + l) * (BK+1) + loadr_b] = FLOAT_TYPE(data_b[pos_b + row_idx.y * p.batch_stride_b + (row_idx.x % p.ne11) * p.stride_b + loadr_b]);
            } else {
                buf_b[(loadc_b + l) * (BK+1) + loadr_b] = FLOAT_TYPE(0.0f);
            }
#endif
        }

        barrier();

        pos_a += BK / LOAD_VEC_A;
        pos_b += BK / LOAD_VEC_B;

        for (uint i = 0; i < BK; i++) {
            // Load from shared into cache
            [[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) {
                [[unroll]] for (uint j = 0; j < TM; j++) {
                    cache_a[wsir * TM + j] = buf_a[(warp_r * WM + wsir * WSUBM + tiwr * TM + j) * (BK+1) + i];
                }
            }
            [[unroll]] for (uint wsic = 0; wsic < WNITER; wsic++) {
                [[unroll]] for (uint j = 0; j < TN; j++) {
                    cache_b[wsic * TN + j] = buf_b[(warp_c * WN + wsic * WSUBN + tiwc * TN + j) * (BK+1) + i];
                }
            }

            [[unroll]] for (uint wsic = 0; wsic < WNITER; wsic++) {
                [[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) {
                    [[unroll]] for (uint cc = 0; cc < TN; cc++) {
                        [[unroll]] for (uint cr = 0; cr < TM; cr++) {
                            const uint sums_idx = (wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr;
                            sums[sums_idx] = fma(float(cache_a[wsir * TM + cr]), float(cache_b[wsic * TN + cc]), sums[sums_idx]);
                        }
                    }
                }
            }
        }

        barrier();
    }

    const uint dr = ir * BM + warp_r * WM;
    const uint dc = ic * BN + warp_c * WN;

#ifndef MUL_MAT_ID
    const uint offsets = batch_idx * p.batch_stride_d + ik * p.batch_stride_d * gl_NumWorkGroups.z;
#endif

    [[unroll]] for (uint wsic = 0; wsic < WNITER; wsic++) {
        [[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) {

            const uint dr_warp = dr + wsir * WSUBM + tiwr * TM;
            const uint dc_warp = dc + wsic * WSUBN + tiwc * TN;
            [[unroll]] for (uint cc = 0; cc < TN; cc++) {
#ifdef MUL_MAT_ID
                const uint row_i = dc_warp + cc;
                if (row_i >= _ne1) break;

                const u16vec2 row_idx = row_ids[row_i];
#endif
                [[unroll]] for (uint cr = 0; cr < TM; cr++) {
#ifdef MUL_MAT_ID
                    data_d[row_idx.y * p.batch_stride_d + row_idx.x * p.stride_d + dr_warp + cr] = D_TYPE(sums[(wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr]);
#else
                    if (dr_warp + cr < p.M && dc_warp + cc < p.N) {
                        data_d[offsets + (dc_warp + cc) * p.stride_d + dr_warp + cr] = D_TYPE(sums[(wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr]);
                    }
#endif
                }
            }
        }
    }
}