Spaces:
Runtime error
Runtime error
File size: 5,159 Bytes
57e3690 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
#include "ggml.h"
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cassert>
#define MAX_NARGS 2
#if defined(__GNUC__)
#pragma GCC diagnostic ignored "-Wdouble-promotion"
#endif
//
// logging
//
#define GGML_DEBUG 0
#if (GGML_DEBUG >= 1)
#define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
#else
#define GGML_PRINT_DEBUG(...)
#endif
#if (GGML_DEBUG >= 5)
#define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
#else
#define GGML_PRINT_DEBUG_5(...)
#endif
#if (GGML_DEBUG >= 10)
#define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
#else
#define GGML_PRINT_DEBUG_10(...)
#endif
#define GGML_PRINT(...) printf(__VA_ARGS__)
static float frand(void) {
return (float)rand()/(float)RAND_MAX;
}
static struct ggml_tensor * get_random_tensor(
struct ggml_context * ctx0, int ndims, int64_t ne[], float fmin, float fmax
) {
struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_F32, ndims, ne);
switch (ndims) {
case 1:
for (int i0 = 0; i0 < ne[0]; i0++) {
((float *)result->data)[i0] = frand()*(fmax - fmin) + fmin;
}
break;
case 2:
for (int i1 = 0; i1 < ne[1]; i1++) {
for (int i0 = 0; i0 < ne[0]; i0++) {
((float *)result->data)[i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
}
}
break;
case 3:
for (int i2 = 0; i2 < ne[2]; i2++) {
for (int i1 = 0; i1 < ne[1]; i1++) {
for (int i0 = 0; i0 < ne[0]; i0++) {
((float *)result->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
}
}
}
break;
case 4:
for (int i3 = 0; i3 < ne[3]; i3++) {
for (int i2 = 0; i2 < ne[2]; i2++) {
for (int i1 = 0; i1 < ne[1]; i1++) {
for (int i0 = 0; i0 < ne[0]; i0++) {
((float *)result->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
}
}
}
}
break;
default:
assert(false);
}
return result;
}
int main(void) {
struct ggml_init_params params = {
/* .mem_size = */ 1024*1024*1024,
/* .mem_buffer = */ NULL,
/* .no_alloc = */ false,
};
struct ggml_context * ctx = ggml_init(params);
int64_t ne1[4] = {4, 128, 1, 1};
int64_t ne2[4] = {4, 256, 1, 1};
int64_t ne3[4] = {128, 256, 1, 1};
struct ggml_tensor * a = get_random_tensor(ctx, 2, ne1, -1, +1);
struct ggml_tensor * b = get_random_tensor(ctx, 2, ne2, -1, +1);
ggml_set_param(ctx, a);
ggml_set_param(ctx, b);
struct ggml_tensor * c = get_random_tensor(ctx, 2, ne3, -1, +1);
struct ggml_tensor * ab = ggml_mul_mat(ctx, a, b);
struct ggml_tensor * d = ggml_sub(ctx, c, ab);
struct ggml_tensor * e = ggml_sum(ctx, ggml_sqr(ctx, d));
struct ggml_cgraph * ge = ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, true);
ggml_build_forward_expand(ge, e);
ggml_graph_reset(ge);
ggml_graph_compute_with_ctx(ctx, ge, /*n_threads*/ 1);
const float fe = ggml_get_f32_1d(e, 0);
printf("%s: e = %.4f\n", __func__, fe);
struct ggml_opt_params opt_params = ggml_opt_default_params(GGML_OPT_TYPE_ADAM);
ggml_opt(ctx, opt_params, e);
ggml_graph_reset(ge);
ggml_graph_compute_with_ctx(ctx, ge, /*n_threads*/ 1);
const float fe_opt = ggml_get_f32_1d(e, 0);
printf("%s: original e = %.4f\n", __func__, fe);
printf("%s: optimized e = %.4f\n", __func__, fe_opt);
const bool success = (fe_opt <= fe);
assert(success);
ggml_free(ctx);
return success ? 0 : -1;
}
// int64_t ne1[4] = {4, 128, 1, 1};
// int64_t ne2[4] = {4, 256, 1, 1};;
// int64_t ne3[4] = {128, 256, 1, 1};
// main: original e = 25890.9375
// main: optimized e = 10094.7031
// int64_t ne1[4] = {8, 128, 1, 1};
// int64_t ne2[4] = {8, 256, 1, 1};;
// int64_t ne3[4] = {128, 256, 1, 1};
// main: original e = 39429.5078
// main: optimized e = 9275.8936
// int64_t ne1[4] = {16, 128, 1, 1};
// int64_t ne2[4] = {16, 256, 1, 1};;
// int64_t ne3[4] = {128, 256, 1, 1};
// main: original e = 68371.1328
// main: optimized e = 7854.4502
// int64_t ne1[4] = {32, 128, 1, 1};
// int64_t ne2[4] = {32, 256, 1, 1};;
// int64_t ne3[4] = {128, 256, 1, 1};
// main: original e = 126061.1953
// main: optimized e = 5451.0166
// int64_t ne1[4] = {4, 1024, 1, 1};
// int64_t ne2[4] = {4, 2048, 1, 1};;
// int64_t ne3[4] = {1024, 2048, 1, 1};
// main: original e = 1620817.8750
// main: optimized e = 698387.6875
// another run on M1
// int64_t ne1[4] = {4, 1024, 1, 1};
// int64_t ne2[4] = {4, 2048, 1, 1};;
// int64_t ne3[4] = {1024, 2048, 1, 1};
// main: original e = 1629595.6250
// main: optimized e = 698169.1250
// int64_t ne1[4] = {32, 1024, 1, 1};
// int64_t ne2[4] = {32, 2048, 1, 1};;
// int64_t ne3[4] = {1024, 2048, 1, 1};
// main: original e = 8146770.5000
// main: optimized e = 651119.1250
|