Spaces:
Runtime error
Runtime error
from __future__ import annotations | |
from typing import Sequence | |
from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES | |
class TensorNameMap: | |
mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = { | |
# Token embeddings | |
MODEL_TENSOR.TOKEN_EMBD: ( | |
"gpt_neox.embed_in", # gptneox | |
"transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone | |
"transformer.word_embeddings", # falcon | |
"word_embeddings", # bloom | |
"model.embed_tokens", # llama-hf nemotron olmoe | |
"tok_embeddings", # llama-pth | |
"embeddings.word_embeddings", # bert nomic-bert | |
"language_model.embedding.word_embeddings", # persimmon | |
"wte", # gpt2 | |
"transformer.embd.wte", # phi2 | |
"model.tok_embeddings", # internlm2 | |
"model.embedding", # mamba-qbert | |
"backbone.embedding", # mamba | |
"backbone.embeddings", # mamba-hf | |
"transformer.in_out_embed", # Grok | |
"embedding.word_embeddings", # chatglm | |
"transformer.token_embeddings", # openelm | |
"shared", # t5 | |
"rwkv.embeddings", # rwkv | |
), | |
# Token type embeddings | |
MODEL_TENSOR.TOKEN_TYPES: ( | |
"embeddings.token_type_embeddings", # bert nomic-bert | |
), | |
# Normalization of token embeddings | |
MODEL_TENSOR.TOKEN_EMBD_NORM: ( | |
"word_embeddings_layernorm", # bloom | |
"embeddings.LayerNorm", # bert | |
"emb_ln", # nomic-bert | |
"transformer.norm", # openelm | |
"rwkv.blocks.0.pre_ln", # rwkv | |
), | |
# Position embeddings | |
MODEL_TENSOR.POS_EMBD: ( | |
"transformer.wpe", # gpt2 | |
"embeddings.position_embeddings", # bert | |
"wpe", # gpt2 | |
), | |
# Output | |
MODEL_TENSOR.OUTPUT: ( | |
"embed_out", # gptneox | |
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe | |
"output", # llama-pth bloom internlm2 | |
"word_embeddings_for_head", # persimmon | |
"lm_head.linear", # phi2 | |
"output_layer", # chatglm | |
"head", # rwkv | |
), | |
# Output norm | |
MODEL_TENSOR.OUTPUT_NORM: ( | |
"gpt_neox.final_layer_norm", # gptneox | |
"transformer.ln_f", # gpt2 gpt-j falcon jais exaone | |
"model.norm", # llama-hf baichuan internlm2 olmoe | |
"norm", # llama-pth | |
"transformer.norm_f", # mpt dbrx | |
"ln_f", # refact bloom qwen gpt2 | |
"language_model.encoder.final_layernorm", # persimmon | |
"model.final_layernorm", # persimmon | |
"lm_head.ln", # phi2 | |
"model.norm_f", # mamba-qbert | |
"backbone.norm_f", # mamba | |
"transformer.rms_norm", # Grok | |
"encoder.final_layernorm", # chatglm | |
"transformer.norm", # openelm | |
"model.norm", # nemotron | |
"rwkv.ln_out", # rwkv | |
), | |
# Rope frequencies | |
MODEL_TENSOR.ROPE_FREQS: ( | |
"rope.freqs", # llama-pth | |
"rotary_pos_emb.inv_freq", # chatglm | |
), | |
MODEL_TENSOR.ROPE_FACTORS_LONG: (), | |
MODEL_TENSOR.ROPE_FACTORS_SHORT: (), | |
} | |
block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = { | |
# Attention norm | |
MODEL_TENSOR.ATTN_NORM: ( | |
"gpt_neox.layers.{bid}.input_layernorm", # gptneox | |
"transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais exaone | |
"transformer.blocks.{bid}.norm_1", # mpt | |
"transformer.h.{bid}.input_layernorm", # falcon7b | |
"h.{bid}.input_layernorm", # bloom | |
"transformer.h.{bid}.ln_mlp", # falcon40b | |
"model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe | |
"layers.{bid}.attention_norm", # llama-pth | |
"language_model.encoder.layers.{bid}.input_layernorm", # persimmon | |
"model.layers.{bid}.ln1", # yi | |
"h.{bid}.ln_1", # gpt2 | |
"transformer.h.{bid}.ln", # phi2 | |
"model.layers.layers.{bid}.norm", # plamo | |
"model.layers.{bid}.attention_norm", # internlm2 | |
"model.layers.{bid}.norm", # mamba-qbert | |
"backbone.layers.{bid}.norm", # mamba | |
"transformer.decoder_layer.{bid}.rms_norm", # Grok | |
"transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx | |
"encoder.layers.{bid}.input_layernorm", # chatglm | |
"transformer.layers.{bid}.attn_norm", # openelm | |
"rwkv.blocks.{bid}.ln1", # rwkv | |
), | |
# Attention norm 2 | |
MODEL_TENSOR.ATTN_NORM_2: ( | |
"transformer.h.{bid}.ln_attn", # falcon40b | |
"encoder.layer.{bid}.layer_norm_1", # jina-v2-code | |
"rwkv.blocks.{bid}.ln2", # rwkv | |
), | |
# Attention query-key-value | |
MODEL_TENSOR.ATTN_QKV: ( | |
"gpt_neox.layers.{bid}.attention.query_key_value", # gptneox | |
"transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais | |
"transformer.blocks.{bid}.attn.Wqkv", # mpt | |
"transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx | |
"transformer.h.{bid}.self_attention.query_key_value", # falcon | |
"h.{bid}.self_attention.query_key_value", # bloom | |
"language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon | |
"model.layers.{bid}.self_attn.query_key_value", # persimmon | |
"h.{bid}.attn.c_attn", # gpt2 | |
"transformer.h.{bid}.mixer.Wqkv", # phi2 | |
"encoder.layers.{bid}.attn.Wqkv", # nomic-bert | |
"model.layers.{bid}.self_attn.qkv_proj", # phi3 | |
"encoder.layers.{bid}.self_attention.query_key_value", # chatglm | |
"transformer.layers.{bid}.attn.qkv_proj", # openelm | |
), | |
# Attention query | |
MODEL_TENSOR.ATTN_Q: ( | |
"model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe | |
"layers.{bid}.attention.wq", # llama-pth | |
"encoder.layer.{bid}.attention.self.query", # bert | |
"transformer.h.{bid}.attn.q_proj", # gpt-j | |
"model.layers.layers.{bid}.self_attn.q_proj", # plamo | |
"model.layers.{bid}.attention.wq", # internlm2 | |
"transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok | |
"transformer.h.{bid}.attn.attention.q_proj", # exaone | |
), | |
# Attention key | |
MODEL_TENSOR.ATTN_K: ( | |
"model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe | |
"layers.{bid}.attention.wk", # llama-pth | |
"encoder.layer.{bid}.attention.self.key", # bert | |
"transformer.h.{bid}.attn.k_proj", # gpt-j | |
"transformer.h.{bid}.attn.k", # refact | |
"model.layers.layers.{bid}.self_attn.k_proj", # plamo | |
"model.layers.{bid}.attention.wk", # internlm2 | |
"transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok | |
"transformer.h.{bid}.attn.attention.k_proj", # exaone | |
), | |
# Attention value | |
MODEL_TENSOR.ATTN_V: ( | |
"model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe | |
"layers.{bid}.attention.wv", # llama-pth | |
"encoder.layer.{bid}.attention.self.value", # bert | |
"transformer.h.{bid}.attn.v_proj", # gpt-j | |
"transformer.h.{bid}.attn.v", # refact | |
"model.layers.layers.{bid}.self_attn.v_proj", # plamo | |
"model.layers.{bid}.attention.wv", # internlm2 | |
"transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok | |
"transformer.h.{bid}.attn.attention.v_proj", # exaone | |
), | |
# Attention output | |
MODEL_TENSOR.ATTN_OUT: ( | |
"gpt_neox.layers.{bid}.attention.dense", # gptneox | |
"transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais | |
"transformer.blocks.{bid}.attn.out_proj", # mpt | |
"transformer.h.{bid}.self_attention.dense", # falcon | |
"h.{bid}.self_attention.dense", # bloom | |
"model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe | |
"layers.{bid}.attention.wo", # llama-pth | |
"encoder.layer.{bid}.attention.output.dense", # bert | |
"transformer.h.{bid}.attn.out_proj", # gpt-j | |
"language_model.encoder.layers.{bid}.self_attention.dense", # persimmon | |
"model.layers.{bid}.self_attn.dense", # persimmon | |
"h.{bid}.attn.c_proj", # gpt2 | |
"transformer.h.{bid}.mixer.out_proj", # phi2 | |
"model.layers.layers.{bid}.self_attn.o_proj", # plamo | |
"model.layers.{bid}.attention.wo", # internlm2 | |
"encoder.layers.{bid}.attn.out_proj", # nomic-bert | |
"transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok | |
"transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx | |
"encoder.layers.{bid}.self_attention.dense", # chatglm | |
"transformer.layers.{bid}.attn.out_proj", # openelm | |
"transformer.h.{bid}.attn.attention.out_proj", # exaone | |
), | |
# Attention output norm | |
MODEL_TENSOR.ATTN_OUT_NORM: ( | |
"encoder.layer.{bid}.attention.output.LayerNorm", # bert | |
"encoder.layers.{bid}.norm1", # nomic-bert | |
"transformer.decoder_layer.{bid}.rms_norm_1", # Grok | |
"transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx | |
), | |
MODEL_TENSOR.ATTN_POST_NORM: ( | |
"model.layers.{bid}.post_attention_layernorm", # gemma2 | |
), | |
# Rotary embeddings | |
MODEL_TENSOR.ATTN_ROT_EMBD: ( | |
"model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf | |
"layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth | |
"model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo | |
"transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell | |
), | |
# Feed-forward norm | |
MODEL_TENSOR.FFN_NORM: ( | |
"gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox | |
"transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone | |
"h.{bid}.post_attention_layernorm", # bloom | |
"transformer.blocks.{bid}.norm_2", # mpt | |
"model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe | |
"layers.{bid}.ffn_norm", # llama-pth | |
"language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon | |
"model.layers.{bid}.ln2", # yi | |
"h.{bid}.ln_2", # gpt2 | |
"model.layers.{bid}.ffn_norm", # internlm2 | |
"transformer.decoder_layer.{bid}.rms_norm_2", # Grok | |
"encoder.layers.{bid}.post_attention_layernorm", # chatglm | |
"transformer.layers.{bid}.ffn_norm", # openelm | |
), | |
# Post feed-forward norm | |
MODEL_TENSOR.FFN_PRE_NORM: ( | |
"model.layers.{bid}.pre_feedforward_layernorm", # gemma2 | |
), | |
# Post feed-forward norm | |
MODEL_TENSOR.FFN_POST_NORM: ( | |
"model.layers.{bid}.post_feedforward_layernorm", # gemma2 | |
), | |
MODEL_TENSOR.FFN_GATE_INP: ( | |
"layers.{bid}.feed_forward.gate", # mixtral | |
"model.layers.{bid}.block_sparse_moe.gate", # mixtral | |
"model.layers.{bid}.mlp.gate", # qwen2moe olmoe | |
"transformer.decoder_layer.{bid}.router", # Grok | |
"transformer.blocks.{bid}.ffn.router.layer", # dbrx | |
"model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe | |
), | |
MODEL_TENSOR.FFN_GATE_INP_SHEXP: ( | |
"model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe | |
), | |
# Feed-forward up | |
MODEL_TENSOR.FFN_UP: ( | |
"gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox | |
"transformer.h.{bid}.mlp.c_fc", # gpt2 jais | |
"transformer.blocks.{bid}.ffn.up_proj", # mpt | |
"transformer.h.{bid}.mlp.dense_h_to_4h", # falcon | |
"h.{bid}.mlp.dense_h_to_4h", # bloom | |
"model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron | |
"layers.{bid}.feed_forward.w3", # llama-pth | |
"encoder.layer.{bid}.intermediate.dense", # bert | |
"transformer.h.{bid}.mlp.fc_in", # gpt-j | |
"transformer.h.{bid}.mlp.linear_3", # refact | |
"language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon | |
"model.layers.{bid}.mlp.dense_h_to_4h", # persimmon | |
"transformer.h.{bid}.mlp.w1", # qwen | |
"h.{bid}.mlp.c_fc", # gpt2 | |
"transformer.h.{bid}.mlp.fc1", # phi2 | |
"model.layers.{bid}.mlp.fc1", # phi2 | |
"model.layers.{bid}.mlp.gate_up_proj", # phi3 | |
"model.layers.layers.{bid}.mlp.up_proj", # plamo | |
"model.layers.{bid}.feed_forward.w3", # internlm2 | |
"encoder.layers.{bid}.mlp.fc11", # nomic-bert | |
"model.layers.{bid}.mlp.c_fc", # starcoder2 | |
"encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2 | |
"model.layers.{bid}.residual_mlp.w3", # arctic | |
"encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm | |
"transformer.h.{bid}.mlp.c_fc_1", # exaone | |
), | |
MODEL_TENSOR.FFN_UP_EXP: ( | |
"layers.{bid}.feed_forward.experts.w3", # mixtral (merged) | |
"transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged) | |
"transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx | |
"model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged) | |
), | |
MODEL_TENSOR.FFN_UP_SHEXP: ( | |
"model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe | |
"model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek2 | |
), | |
# AWQ-activation gate | |
MODEL_TENSOR.FFN_ACT: ( | |
"transformer.blocks.{bid}.ffn.act", # mpt | |
), | |
# Feed-forward gate | |
MODEL_TENSOR.FFN_GATE: ( | |
"model.layers.{bid}.mlp.gate_proj", # llama-hf refact | |
"layers.{bid}.feed_forward.w1", # llama-pth | |
"transformer.h.{bid}.mlp.w2", # qwen | |
"transformer.h.{bid}.mlp.c_fc2", # jais | |
"model.layers.layers.{bid}.mlp.gate_proj", # plamo | |
"model.layers.{bid}.feed_forward.w1", # internlm2 | |
"encoder.layers.{bid}.mlp.fc12", # nomic-bert | |
"encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2 | |
"transformer.h.{bid}.mlp.linear_1", # refact | |
"model.layers.{bid}.residual_mlp.w1", # arctic | |
"transformer.h.{bid}.mlp.c_fc_0", # exaone | |
), | |
MODEL_TENSOR.FFN_GATE_EXP: ( | |
"layers.{bid}.feed_forward.experts.w1", # mixtral (merged) | |
"transformer.decoder_layer.{bid}.moe.linear", # Grok (merged) | |
"transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx | |
"model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged) | |
), | |
MODEL_TENSOR.FFN_GATE_SHEXP: ( | |
"model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe | |
"model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek2 | |
), | |
# Feed-forward down | |
MODEL_TENSOR.FFN_DOWN: ( | |
"gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox | |
"transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais | |
"transformer.blocks.{bid}.ffn.down_proj", # mpt | |
"transformer.h.{bid}.mlp.dense_4h_to_h", # falcon | |
"h.{bid}.mlp.dense_4h_to_h", # bloom | |
"model.layers.{bid}.mlp.down_proj", # llama-hf nemotron | |
"layers.{bid}.feed_forward.w2", # llama-pth | |
"encoder.layer.{bid}.output.dense", # bert | |
"transformer.h.{bid}.mlp.fc_out", # gpt-j | |
"language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon | |
"model.layers.{bid}.mlp.dense_4h_to_h", # persimmon | |
"h.{bid}.mlp.c_proj", # gpt2 | |
"transformer.h.{bid}.mlp.fc2", # phi2 | |
"model.layers.{bid}.mlp.fc2", # phi2 | |
"model.layers.layers.{bid}.mlp.down_proj", # plamo | |
"model.layers.{bid}.feed_forward.w2", # internlm2 | |
"encoder.layers.{bid}.mlp.fc2", # nomic-bert | |
"model.layers.{bid}.mlp.c_proj", # starcoder2 | |
"encoder.layer.{bid}.mlp.wo", # jina-bert-v2 | |
"transformer.layers.{bid}.ffn.proj_2", # openelm | |
"model.layers.{bid}.residual_mlp.w2", # arctic | |
"encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2 | |
"encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm | |
"model.layers.h.{bid}.mlp.c_proj", # exaone | |
), | |
MODEL_TENSOR.FFN_DOWN_EXP: ( | |
"layers.{bid}.feed_forward.experts.w2", # mixtral (merged) | |
"transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged) | |
"transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx | |
"model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged) | |
"model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe | |
), | |
MODEL_TENSOR.FFN_DOWN_SHEXP: ( | |
"model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe | |
"model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek2 | |
), | |
MODEL_TENSOR.ATTN_Q_NORM: ( | |
"language_model.encoder.layers.{bid}.self_attention.q_layernorm", | |
"model.layers.{bid}.self_attn.q_layernorm", # persimmon | |
"model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon | |
"transformer.blocks.{bid}.attn.q_ln", # sea-lion | |
"encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2 | |
"transformer.layers.{bid}.attn.q_norm", # openelm | |
), | |
MODEL_TENSOR.ATTN_K_NORM: ( | |
"language_model.encoder.layers.{bid}.self_attention.k_layernorm", | |
"model.layers.{bid}.self_attn.k_layernorm", # persimmon | |
"model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon | |
"transformer.blocks.{bid}.attn.k_ln", # sea-lion | |
"encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2 | |
"transformer.layers.{bid}.attn.k_norm", # openelm | |
), | |
MODEL_TENSOR.ROPE_FREQS: ( | |
"language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon | |
), | |
MODEL_TENSOR.LAYER_OUT_NORM: ( | |
"encoder.layer.{bid}.output.LayerNorm", # bert | |
"encoder.layers.{bid}.norm2", # nomic-bert | |
"transformer.decoder_layer.{bid}.rms_norm_3", # Grok | |
"encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2 | |
"encoder.layer.{bid}.layer_norm_2" # jina-v2-code | |
), | |
MODEL_TENSOR.SSM_IN: ( | |
"model.layers.{bid}.in_proj", | |
"backbone.layers.{bid}.mixer.in_proj", | |
), | |
MODEL_TENSOR.SSM_CONV1D: ( | |
"model.layers.{bid}.conv1d", | |
"backbone.layers.{bid}.mixer.conv1d", | |
), | |
MODEL_TENSOR.SSM_X: ( | |
"model.layers.{bid}.x_proj", | |
"backbone.layers.{bid}.mixer.x_proj", | |
), | |
MODEL_TENSOR.SSM_DT: ( | |
"model.layers.{bid}.dt_proj", | |
"backbone.layers.{bid}.mixer.dt_proj", | |
), | |
MODEL_TENSOR.SSM_A: ( | |
"model.layers.{bid}.A_log", | |
"backbone.layers.{bid}.mixer.A_log", | |
), | |
MODEL_TENSOR.SSM_D: ( | |
"model.layers.{bid}.D", | |
"backbone.layers.{bid}.mixer.D", | |
), | |
MODEL_TENSOR.SSM_OUT: ( | |
"model.layers.{bid}.out_proj", | |
"backbone.layers.{bid}.mixer.out_proj", | |
), | |
MODEL_TENSOR.TIME_MIX_W1: ( | |
"rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv v6 | |
), | |
MODEL_TENSOR.TIME_MIX_W2: ( | |
"rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv v6 | |
), | |
MODEL_TENSOR.TIME_MIX_LERP_X: ( | |
"rwkv.blocks.{bid}.attention.time_maa_x", # rwkv v6 | |
), | |
MODEL_TENSOR.TIME_MIX_LERP_K: ( | |
"rwkv.blocks.{bid}.attention.time_maa_k", # rwkv v6 | |
), | |
MODEL_TENSOR.TIME_MIX_LERP_V: ( | |
"rwkv.blocks.{bid}.attention.time_maa_v", # rwkv v6 | |
), | |
MODEL_TENSOR.TIME_MIX_LERP_R: ( | |
"rwkv.blocks.{bid}.attention.time_maa_r", # rwkv v6 | |
), | |
MODEL_TENSOR.TIME_MIX_LERP_G: ( | |
"rwkv.blocks.{bid}.attention.time_maa_g", # rwkv v6 | |
), | |
MODEL_TENSOR.TIME_MIX_LERP_W: ( | |
"rwkv.blocks.{bid}.attention.time_maa_w", # rwkv v6 | |
), | |
MODEL_TENSOR.TIME_MIX_FIRST: ( | |
"rwkv.blocks.{bid}.attention.time_faaaa", # rwkv v6 | |
), | |
MODEL_TENSOR.TIME_MIX_DECAY: ( | |
"rwkv.blocks.{bid}.attention.time_decay", # rwkv v6 | |
), | |
MODEL_TENSOR.TIME_MIX_DECAY_W1: ( | |
"rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv v6 | |
), | |
MODEL_TENSOR.TIME_MIX_DECAY_W2: ( | |
"rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv v6 | |
), | |
MODEL_TENSOR.TIME_MIX_KEY: ( | |
"rwkv.blocks.{bid}.attention.key", # rwkv | |
), | |
MODEL_TENSOR.TIME_MIX_VALUE: ( | |
"rwkv.blocks.{bid}.attention.value", # rwkv | |
), | |
MODEL_TENSOR.TIME_MIX_RECEPTANCE: ( | |
"rwkv.blocks.{bid}.attention.receptance", # rwkv | |
), | |
MODEL_TENSOR.TIME_MIX_GATE: ( | |
"rwkv.blocks.{bid}.attention.gate", # rwkv | |
), | |
MODEL_TENSOR.TIME_MIX_LN: ( | |
"rwkv.blocks.{bid}.attention.ln_x", # rwkv | |
), | |
MODEL_TENSOR.TIME_MIX_OUTPUT: ( | |
"rwkv.blocks.{bid}.attention.output", # rwkv | |
), | |
MODEL_TENSOR.CHANNEL_MIX_LERP_K: ( | |
"rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv v6 | |
), | |
MODEL_TENSOR.CHANNEL_MIX_LERP_R: ( | |
"rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv v6 | |
), | |
MODEL_TENSOR.CHANNEL_MIX_KEY: ( | |
"rwkv.blocks.{bid}.feed_forward.key", # rwkv | |
), | |
MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: ( | |
"rwkv.blocks.{bid}.feed_forward.receptance", # rwkv | |
), | |
MODEL_TENSOR.CHANNEL_MIX_VALUE: ( | |
"rwkv.blocks.{bid}.feed_forward.value", # rwkv | |
), | |
MODEL_TENSOR.ATTN_Q_A: ( | |
"model.layers.{bid}.self_attn.q_a_proj", # deepseek2 | |
), | |
MODEL_TENSOR.ATTN_Q_B: ( | |
"model.layers.{bid}.self_attn.q_b_proj", # deepseek2 | |
), | |
MODEL_TENSOR.ATTN_KV_A_MQA: ( | |
"model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2 | |
), | |
MODEL_TENSOR.ATTN_KV_B: ( | |
"model.layers.{bid}.self_attn.kv_b_proj", # deepseek2 | |
), | |
MODEL_TENSOR.ATTN_Q_A_NORM: ( | |
"model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2 | |
), | |
MODEL_TENSOR.ATTN_KV_A_NORM: ( | |
"model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2 | |
), | |
MODEL_TENSOR.ATTN_SUB_NORM: ( | |
"model.layers.{bid}.self_attn.inner_attn_ln", # bitnet | |
), | |
MODEL_TENSOR.FFN_SUB_NORM: ( | |
"model.layers.{bid}.mlp.ffn_layernorm", # bitnet | |
), | |
MODEL_TENSOR.DEC_ATTN_NORM: ( | |
"decoder.block.{bid}.layer.0.layer_norm", # t5 | |
), | |
MODEL_TENSOR.DEC_ATTN_Q: ( | |
"decoder.block.{bid}.layer.0.SelfAttention.q", # t5 | |
), | |
MODEL_TENSOR.DEC_ATTN_K: ( | |
"decoder.block.{bid}.layer.0.SelfAttention.k", # t5 | |
), | |
MODEL_TENSOR.DEC_ATTN_V: ( | |
"decoder.block.{bid}.layer.0.SelfAttention.v", # t5 | |
), | |
MODEL_TENSOR.DEC_ATTN_OUT: ( | |
"decoder.block.{bid}.layer.0.SelfAttention.o", # t5 | |
), | |
MODEL_TENSOR.DEC_ATTN_REL_B: ( | |
"decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5 | |
), | |
MODEL_TENSOR.DEC_CROSS_ATTN_NORM: ( | |
"decoder.block.{bid}.layer.1.layer_norm", # t5 | |
), | |
MODEL_TENSOR.DEC_CROSS_ATTN_Q: ( | |
"decoder.block.{bid}.layer.1.EncDecAttention.q", # t5 | |
), | |
MODEL_TENSOR.DEC_CROSS_ATTN_K: ( | |
"decoder.block.{bid}.layer.1.EncDecAttention.k", # t5 | |
), | |
MODEL_TENSOR.DEC_CROSS_ATTN_V: ( | |
"decoder.block.{bid}.layer.1.EncDecAttention.v", # t5 | |
), | |
MODEL_TENSOR.DEC_CROSS_ATTN_OUT: ( | |
"decoder.block.{bid}.layer.1.EncDecAttention.o", # t5 | |
), | |
MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: ( | |
"decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5 | |
), | |
MODEL_TENSOR.DEC_FFN_NORM: ( | |
"decoder.block.{bid}.layer.2.layer_norm", # t5 | |
), | |
MODEL_TENSOR.DEC_FFN_GATE: ( | |
"decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5 | |
), | |
MODEL_TENSOR.DEC_FFN_UP: ( | |
"decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5 | |
"decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5 | |
), | |
MODEL_TENSOR.DEC_FFN_DOWN: ( | |
"decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5 | |
), | |
MODEL_TENSOR.DEC_OUTPUT_NORM: ( | |
"decoder.final_layer_norm", # t5 | |
), | |
MODEL_TENSOR.ENC_ATTN_NORM: ( | |
"encoder.block.{bid}.layer.0.layer_norm", # t5 | |
), | |
MODEL_TENSOR.ENC_ATTN_Q: ( | |
"encoder.block.{bid}.layer.0.SelfAttention.q", # t5 | |
), | |
MODEL_TENSOR.ENC_ATTN_K: ( | |
"encoder.block.{bid}.layer.0.SelfAttention.k", # t5 | |
), | |
MODEL_TENSOR.ENC_ATTN_V: ( | |
"encoder.block.{bid}.layer.0.SelfAttention.v", # t5 | |
), | |
MODEL_TENSOR.ENC_ATTN_OUT: ( | |
"encoder.block.{bid}.layer.0.SelfAttention.o", # t5 | |
), | |
MODEL_TENSOR.ENC_ATTN_REL_B: ( | |
"encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5 | |
), | |
MODEL_TENSOR.ENC_FFN_NORM: ( | |
"encoder.block.{bid}.layer.1.layer_norm", # t5 | |
), | |
MODEL_TENSOR.ENC_FFN_GATE: ( | |
"encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5 | |
), | |
MODEL_TENSOR.ENC_FFN_UP: ( | |
"encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5 | |
"encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5 | |
), | |
MODEL_TENSOR.ENC_FFN_DOWN: ( | |
"encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5 | |
), | |
MODEL_TENSOR.ENC_OUTPUT_NORM: ( | |
"encoder.final_layer_norm", # t5 | |
), | |
MODEL_TENSOR.CLS: ( | |
"classifier", # jina | |
"classifier.dense", # roberta | |
), | |
MODEL_TENSOR.CLS_OUT: ( | |
"classifier.out_proj", # roberta | |
), | |
} | |
# architecture-specific block mappings | |
arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = { | |
MODEL_ARCH.ARCTIC: { | |
MODEL_TENSOR.FFN_NORM: ( | |
"model.layers.{bid}.residual_layernorm", | |
), | |
MODEL_TENSOR.FFN_NORM_EXP: ( | |
"model.layers.{bid}.post_attention_layernorm", | |
), | |
}, | |
} | |
mapping: dict[str, tuple[MODEL_TENSOR, str]] | |
def __init__(self, arch: MODEL_ARCH, n_blocks: int): | |
self.mapping = {} | |
for tensor, keys in self.mappings_cfg.items(): | |
if tensor not in MODEL_TENSORS[arch]: | |
continue | |
tensor_name = TENSOR_NAMES[tensor] | |
self.mapping[tensor_name] = (tensor, tensor_name) | |
for key in keys: | |
self.mapping[key] = (tensor, tensor_name) | |
if arch in self.arch_block_mappings_cfg: | |
self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch]) | |
for bid in range(n_blocks): | |
for tensor, keys in self.block_mappings_cfg.items(): | |
if tensor not in MODEL_TENSORS[arch]: | |
continue | |
tensor_name = TENSOR_NAMES[tensor].format(bid = bid) | |
self.mapping[tensor_name] = (tensor, tensor_name) | |
for key in keys: | |
key = key.format(bid = bid) | |
self.mapping[key] = (tensor, tensor_name) | |
def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None: | |
result = self.mapping.get(key) | |
if result is not None: | |
return result | |
for suffix in try_suffixes: | |
if key.endswith(suffix): | |
result = self.mapping.get(key[:-len(suffix)]) | |
if result is not None: | |
return result[0], result[1] + suffix | |
return None | |
def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None: | |
result = self.get_type_and_name(key, try_suffixes = try_suffixes) | |
if result is None: | |
return None | |
return result[1] | |
def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None: | |
result = self.get_type_and_name(key, try_suffixes = try_suffixes) | |
if result is None: | |
return None | |
return result[0] | |
def __getitem__(self, key: str) -> str: | |
try: | |
return self.mapping[key][1] | |
except KeyError: | |
raise KeyError(key) | |
def __contains__(self, key: str) -> bool: | |
return key in self.mapping | |
def __repr__(self) -> str: | |
return repr(self.mapping) | |
def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap: | |
return TensorNameMap(arch, n_blocks) | |