Spaces:
Runtime error
Runtime error
static void print_usage(int, char ** argv) { | |
LOG("\nexample usage:\n"); | |
LOG("\n %s -m model.gguf -p \"Hello my name is\" -n 32 -np 4\n", argv[0]); | |
LOG("\n"); | |
} | |
int main(int argc, char ** argv) { | |
common_params params; | |
params.prompt = "Hello my name is"; | |
params.n_predict = 32; | |
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON, print_usage)) { | |
return 1; | |
} | |
common_init(); | |
// number of parallel batches | |
int n_parallel = params.n_parallel; | |
// total length of the sequences including the prompt | |
int n_predict = params.n_predict; | |
// init LLM | |
llama_backend_init(); | |
llama_numa_init(params.numa); | |
// initialize the model | |
llama_model_params model_params = common_model_params_to_llama(params); | |
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params); | |
if (model == NULL) { | |
LOG_ERR("%s: error: unable to load model\n" , __func__); | |
return 1; | |
} | |
// tokenize the prompt | |
std::vector<llama_token> tokens_list; | |
tokens_list = common_tokenize(model, params.prompt, true); | |
const int n_kv_req = tokens_list.size() + (n_predict - tokens_list.size())*n_parallel; | |
// initialize the context | |
llama_context_params ctx_params = common_context_params_to_llama(params); | |
ctx_params.n_ctx = n_kv_req; | |
ctx_params.n_batch = std::max(n_predict, n_parallel); | |
llama_context * ctx = llama_new_context_with_model(model, ctx_params); | |
auto sparams = llama_sampler_chain_default_params(); | |
llama_sampler * smpl = llama_sampler_chain_init(sparams); | |
llama_sampler_chain_add(smpl, llama_sampler_init_top_k(params.sparams.top_k)); | |
llama_sampler_chain_add(smpl, llama_sampler_init_top_p(params.sparams.top_p, params.sparams.min_keep)); | |
llama_sampler_chain_add(smpl, llama_sampler_init_temp (params.sparams.temp)); | |
llama_sampler_chain_add(smpl, llama_sampler_init_dist (params.sparams.seed)); | |
if (ctx == NULL) { | |
LOG_ERR("%s: error: failed to create the llama_context\n" , __func__); | |
return 1; | |
} | |
const int n_ctx = llama_n_ctx(ctx); | |
LOG_INF("\n%s: n_predict = %d, n_ctx = %d, n_batch = %u, n_parallel = %d, n_kv_req = %d\n", __func__, n_predict, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req); | |
// make sure the KV cache is big enough to hold all the prompt and generated tokens | |
if (n_kv_req > n_ctx) { | |
LOG_ERR("%s: error: n_kv_req (%d) > n_ctx, the required KV cache size is not big enough\n", __func__, n_kv_req); | |
LOG_ERR("%s: either reduce n_parallel or increase n_ctx\n", __func__); | |
return 1; | |
} | |
// print the prompt token-by-token | |
LOG("\n"); | |
for (auto id : tokens_list) { | |
LOG("%s", common_token_to_piece(ctx, id).c_str()); | |
} | |
// create a llama_batch | |
// we use this object to submit token data for decoding | |
llama_batch batch = llama_batch_init(std::max(tokens_list.size(), (size_t) n_parallel), 0, n_parallel); | |
std::vector<llama_seq_id> seq_ids(n_parallel, 0); | |
for (int32_t i = 0; i < n_parallel; ++i) { | |
seq_ids[i] = i; | |
} | |
// evaluate the initial prompt | |
for (size_t i = 0; i < tokens_list.size(); ++i) { | |
common_batch_add(batch, tokens_list[i], i, seq_ids, false); | |
} | |
GGML_ASSERT(batch.n_tokens == (int) tokens_list.size()); | |
if (llama_model_has_encoder(model)) { | |
if (llama_encode(ctx, batch)) { | |
LOG_ERR("%s : failed to eval\n", __func__); | |
return 1; | |
} | |
llama_token decoder_start_token_id = llama_model_decoder_start_token(model); | |
if (decoder_start_token_id == -1) { | |
decoder_start_token_id = llama_token_bos(model); | |
} | |
common_batch_clear(batch); | |
common_batch_add(batch, decoder_start_token_id, 0, seq_ids, false); | |
} | |
// llama_decode will output logits only for the last token of the prompt | |
batch.logits[batch.n_tokens - 1] = true; | |
if (llama_decode(ctx, batch) != 0) { | |
LOG_ERR("%s: llama_decode() failed\n", __func__); | |
return 1; | |
} | |
//// assign the system KV cache to all parallel sequences | |
//// this way, the parallel sequences will "reuse" the prompt tokens without having to copy them | |
//for (int32_t i = 1; i < n_parallel; ++i) { | |
// llama_kv_cache_seq_cp(ctx, 0, i, -1, -1); | |
//} | |
if (n_parallel > 1) { | |
LOG("\n\n%s: generating %d sequences ...\n", __func__, n_parallel); | |
} | |
// main loop | |
// we will store the parallel decoded sequences in this vector | |
std::vector<std::string> streams(n_parallel); | |
// remember the batch index of the last token for each parallel sequence | |
// we need this to determine which logits to sample from | |
std::vector<int32_t> i_batch(n_parallel, batch.n_tokens - 1); | |
int n_cur = batch.n_tokens; | |
int n_decode = 0; | |
const auto t_main_start = ggml_time_us(); | |
while (n_cur <= n_predict) { | |
// prepare the next batch | |
common_batch_clear(batch); | |
// sample the next token for each parallel sequence / stream | |
for (int32_t i = 0; i < n_parallel; ++i) { | |
if (i_batch[i] < 0) { | |
// the stream has already finished | |
continue; | |
} | |
const llama_token new_token_id = llama_sampler_sample(smpl, ctx, i_batch[i]); | |
// is it an end of generation? -> mark the stream as finished | |
if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) { | |
i_batch[i] = -1; | |
LOG("\n"); | |
if (n_parallel > 1) { | |
LOG_INF("%s: stream %d finished at n_cur = %d", __func__, i, n_cur); | |
} | |
continue; | |
} | |
// if there is only one stream, we print immediately to stdout | |
if (n_parallel == 1) { | |
LOG("%s", common_token_to_piece(ctx, new_token_id).c_str()); | |
} | |
streams[i] += common_token_to_piece(ctx, new_token_id); | |
i_batch[i] = batch.n_tokens; | |
// push this new token for next evaluation | |
common_batch_add(batch, new_token_id, n_cur, { i }, true); | |
n_decode += 1; | |
} | |
// all streams are finished | |
if (batch.n_tokens == 0) { | |
break; | |
} | |
n_cur += 1; | |
// evaluate the current batch with the transformer model | |
if (llama_decode(ctx, batch)) { | |
LOG_ERR("%s : failed to eval, return code %d\n", __func__, 1); | |
return 1; | |
} | |
} | |
if (n_parallel > 1) { | |
LOG("\n"); | |
for (int32_t i = 0; i < n_parallel; ++i) { | |
LOG("sequence %d:\n\n%s%s\n\n", i, params.prompt.c_str(), streams[i].c_str()); | |
} | |
} | |
const auto t_main_end = ggml_time_us(); | |
LOG_INF("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n", | |
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f)); | |
LOG("\n"); | |
llama_perf_sampler_print(smpl); | |
llama_perf_context_print(ctx); | |
fprintf(stderr, "\n"); | |
llama_batch_free(batch); | |
llama_sampler_free(smpl); | |
llama_free(ctx); | |
llama_free_model(model); | |
llama_backend_free(); | |
return 0; | |
} | |