Spaces:
Runtime error
Runtime error
// NOTE: This is modified from clip.cpp only for LLaVA, | |
// so there might be still unnecessary artifacts hanging around | |
// I'll gradually clean and extend it | |
// Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch | |
//#define CLIP_DEBUG_FUNCTIONS | |
// RGB uint8 image | |
struct clip_image_u8 { | |
int nx; | |
int ny; | |
std::vector<uint8_t> buf; | |
}; | |
// RGB float32 image (NHWC) | |
// Memory layout: RGBRGBRGB... | |
struct clip_image_f32 { | |
int nx; | |
int ny; | |
std::vector<float> buf; | |
}; | |
static std::string format(const char * fmt, ...) { | |
va_list ap; | |
va_list ap2; | |
va_start(ap, fmt); | |
va_copy(ap2, ap); | |
int size = vsnprintf(NULL, 0, fmt, ap); | |
GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT | |
std::vector<char> buf(size + 1); | |
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2); | |
GGML_ASSERT(size2 == size); | |
va_end(ap2); | |
va_end(ap); | |
return std::string(buf.data(), buf.size()); | |
} | |
// | |
// key constants | |
// | |
// | |
// tensor name constants | |
// | |
enum projector_type { | |
PROJECTOR_TYPE_MLP, | |
PROJECTOR_TYPE_MLP_NORM, | |
PROJECTOR_TYPE_LDP, | |
PROJECTOR_TYPE_LDPV2, | |
PROJECTOR_TYPE_RESAMPLER, | |
PROJECTOR_TYPE_UNKNOWN, | |
}; | |
static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = { | |
{ PROJECTOR_TYPE_MLP, "mlp" }, | |
{ PROJECTOR_TYPE_LDP, "ldp" }, | |
{ PROJECTOR_TYPE_LDPV2, "ldpv2"}, | |
{ PROJECTOR_TYPE_RESAMPLER, "resampler"}, | |
}; | |
// | |
// utilities to get data from a gguf file | |
// | |
static int get_key_idx(const gguf_context * ctx, const char * key) { | |
int i = gguf_find_key(ctx, key); | |
if (i == -1) { | |
LOG_ERR("key %s not found in file\n", key); | |
throw std::runtime_error(format("Missing required key: %s", key)); | |
} | |
return i; | |
} | |
static uint32_t get_u32(const gguf_context * ctx, const std::string & key) { | |
const int i = get_key_idx(ctx, key.c_str()); | |
return gguf_get_val_u32(ctx, i); | |
} | |
static float get_f32(const gguf_context * ctx, const std::string & key) { | |
const int i = get_key_idx(ctx, key.c_str()); | |
return gguf_get_val_f32(ctx, i); | |
} | |
static struct ggml_tensor * get_tensor(struct ggml_context * ctx, const std::string & name) { | |
struct ggml_tensor * cur = ggml_get_tensor(ctx, name.c_str()); | |
if (!cur) { | |
throw std::runtime_error(format("%s: unable to find tensor %s\n", __func__, name.c_str())); | |
} | |
return cur; | |
} | |
static std::string get_ftype(int ftype) { | |
return ggml_type_name(static_cast<ggml_type>(ftype)); | |
} | |
static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) { | |
switch (type) { | |
case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]); | |
case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]); | |
case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]); | |
case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]); | |
case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]); | |
case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]); | |
case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]); | |
case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]); | |
case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]); | |
case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]); | |
case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false"; | |
default: return format("unknown type %d", type); | |
} | |
} | |
static void replace_all(std::string & s, const std::string & search, const std::string & replace) { | |
if (search.empty()) { | |
return; | |
} | |
std::string builder; | |
builder.reserve(s.length()); | |
size_t pos = 0; | |
size_t last_pos = 0; | |
while ((pos = s.find(search, last_pos)) != std::string::npos) { | |
builder.append(s, last_pos, pos - last_pos); | |
builder.append(replace); | |
last_pos = pos + search.length(); | |
} | |
builder.append(s, last_pos, std::string::npos); | |
s = std::move(builder); | |
} | |
static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) { | |
const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i); | |
switch (type) { | |
case GGUF_TYPE_STRING: | |
return gguf_get_val_str(ctx_gguf, i); | |
case GGUF_TYPE_ARRAY: | |
{ | |
const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i); | |
int arr_n = gguf_get_arr_n(ctx_gguf, i); | |
const void * data = gguf_get_arr_data(ctx_gguf, i); | |
std::stringstream ss; | |
ss << "["; | |
for (int j = 0; j < arr_n; j++) { | |
if (arr_type == GGUF_TYPE_STRING) { | |
std::string val = gguf_get_arr_str(ctx_gguf, i, j); | |
// escape quotes | |
replace_all(val, "\\", "\\\\"); | |
replace_all(val, "\"", "\\\""); | |
ss << '"' << val << '"'; | |
} else if (arr_type == GGUF_TYPE_ARRAY) { | |
ss << "???"; | |
} else { | |
ss << gguf_data_to_str(arr_type, data, j); | |
} | |
if (j < arr_n - 1) { | |
ss << ", "; | |
} | |
} | |
ss << "]"; | |
return ss.str(); | |
} | |
default: | |
return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0); | |
} | |
} | |
static void print_tensor_info(const ggml_tensor * tensor, const char * prefix = "") { | |
size_t tensor_size = ggml_nbytes(tensor); | |
LOG_INF("%s: n_dims = %d, name = %s, tensor_size=%zu, shape:[%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "], type = %s\n", | |
prefix, ggml_n_dims(tensor), tensor->name, tensor_size, | |
tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], ggml_type_name(tensor->type)); | |
} | |
static projector_type clip_projector_type_from_string(const std::string & name) { | |
for (const auto & kv : PROJECTOR_TYPE_NAMES) { // NOLINT | |
if (kv.second == name) { | |
return kv.first; | |
} | |
} | |
return PROJECTOR_TYPE_UNKNOWN; | |
} | |
static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) { | |
std::ofstream file(filename, std::ios::binary); | |
if (!file.is_open()) { | |
LOG_ERR("Failed to open file for writing: %s\n", filename.c_str()); | |
return; | |
} | |
// PPM header: P6 format, width, height, and max color value | |
file << "P6\n" << img.nx << " " << img.ny << "\n255\n"; | |
// Write pixel data | |
for (size_t i = 0; i < img.buf.size(); i += 3) { | |
// PPM expects binary data in RGB format, which matches our image buffer | |
file.write(reinterpret_cast<const char*>(&img.buf[i]), 3); | |
} | |
file.close(); | |
} | |
static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) { | |
std::ofstream file(filename, std::ios::binary); | |
if (!file.is_open()) { | |
LOG_ERR("Failed to open file for writing: %s\n", filename.c_str()); | |
return; | |
} | |
int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data | |
int bytesPerPixel = 3; | |
int widthInBytes = img.nx * bytesPerPixel; | |
int paddingAmount = (4 - (widthInBytes % 4)) % 4; | |
int stride = widthInBytes + paddingAmount; | |
// Bitmap file header | |
unsigned char fileHeader[14] = { | |
'B','M', // Signature | |
0,0,0,0, // Image file size in bytes | |
0,0,0,0, // Reserved | |
54,0,0,0 // Start of pixel array | |
}; | |
// Total file size | |
fileSize = 54 + (stride * img.ny); | |
fileHeader[2] = (unsigned char)(fileSize); | |
fileHeader[3] = (unsigned char)(fileSize >> 8); | |
fileHeader[4] = (unsigned char)(fileSize >> 16); | |
fileHeader[5] = (unsigned char)(fileSize >> 24); | |
// Bitmap information header (BITMAPINFOHEADER) | |
unsigned char infoHeader[40] = { | |
40,0,0,0, // Size of this header (40 bytes) | |
0,0,0,0, // Image width | |
0,0,0,0, // Image height | |
1,0, // Number of color planes | |
24,0, // Bits per pixel | |
0,0,0,0, // No compression | |
0,0,0,0, // Image size (can be 0 for no compression) | |
0,0,0,0, // X pixels per meter (not specified) | |
0,0,0,0, // Y pixels per meter (not specified) | |
0,0,0,0, // Total colors (color table not used) | |
0,0,0,0 // Important colors (all are important) | |
}; | |
// Width and height in the information header | |
infoHeader[4] = (unsigned char)(img.nx); | |
infoHeader[5] = (unsigned char)(img.nx >> 8); | |
infoHeader[6] = (unsigned char)(img.nx >> 16); | |
infoHeader[7] = (unsigned char)(img.nx >> 24); | |
infoHeader[8] = (unsigned char)(img.ny); | |
infoHeader[9] = (unsigned char)(img.ny >> 8); | |
infoHeader[10] = (unsigned char)(img.ny >> 16); | |
infoHeader[11] = (unsigned char)(img.ny >> 24); | |
// Write file headers | |
file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader)); | |
file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader)); | |
// Pixel data | |
std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row | |
for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top | |
for (int x = 0; x < img.nx; ++x) { | |
// Each pixel | |
size_t pixelIndex = (y * img.nx + x) * 3; | |
unsigned char pixel[3] = { | |
img.buf[pixelIndex + 2], // BMP stores pixels in BGR format | |
img.buf[pixelIndex + 1], | |
img.buf[pixelIndex] | |
}; | |
file.write(reinterpret_cast<char*>(pixel), 3); | |
} | |
// Write padding for the row | |
file.write(reinterpret_cast<char*>(padding.data()), paddingAmount); | |
} | |
file.close(); | |
} | |
// debug function to convert f32 to u8 | |
static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) { | |
dst.nx = src.nx; | |
dst.ny = src.ny; | |
dst.buf.resize(3 * src.nx * src.ny); | |
for (size_t i = 0; i < src.buf.size(); ++i) { | |
dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255)); | |
} | |
} | |
// | |
// clip layers | |
// | |
struct clip_hparams { | |
int32_t image_size; | |
int32_t patch_size; | |
int32_t hidden_size; | |
int32_t n_intermediate; | |
int32_t projection_dim; | |
int32_t n_head; | |
int32_t n_layer; | |
float eps; | |
char mm_patch_merge_type[32] = "flat"; // spatial_unpad or flat (default) | |
int32_t image_grid_pinpoints[32]; | |
int32_t image_crop_resolution; | |
}; | |
struct clip_layer { | |
// attention | |
struct ggml_tensor * k_w; | |
struct ggml_tensor * k_b; | |
struct ggml_tensor * q_w; | |
struct ggml_tensor * q_b; | |
struct ggml_tensor * v_w; | |
struct ggml_tensor * v_b; | |
struct ggml_tensor * o_w; | |
struct ggml_tensor * o_b; | |
// layernorm 1 | |
struct ggml_tensor * ln_1_w; | |
struct ggml_tensor * ln_1_b; | |
// ff | |
struct ggml_tensor * ff_i_w; | |
struct ggml_tensor * ff_i_b; | |
struct ggml_tensor * ff_o_w; | |
struct ggml_tensor * ff_o_b; | |
// layernorm 2 | |
struct ggml_tensor * ln_2_w; | |
struct ggml_tensor * ln_2_b; | |
}; | |
struct clip_vision_model { | |
struct clip_hparams hparams; | |
// embeddings | |
struct ggml_tensor * class_embedding; | |
struct ggml_tensor * patch_embeddings; | |
struct ggml_tensor * patch_bias; | |
struct ggml_tensor * position_embeddings; | |
struct ggml_tensor * pre_ln_w; | |
struct ggml_tensor * pre_ln_b; | |
std::vector<clip_layer> layers; | |
struct ggml_tensor * post_ln_w; | |
struct ggml_tensor * post_ln_b; | |
struct ggml_tensor * projection; | |
// LLaVA projection | |
struct ggml_tensor * mm_0_w = NULL; | |
struct ggml_tensor * mm_0_b = NULL; | |
struct ggml_tensor * mm_2_w = NULL; | |
struct ggml_tensor * mm_2_b = NULL; | |
struct ggml_tensor * image_newline = NULL; | |
// Yi type models with mlp+normalization projection | |
struct ggml_tensor * mm_1_w = NULL; // Yi type models have 0, 1, 3, 4 | |
struct ggml_tensor * mm_1_b = NULL; | |
struct ggml_tensor * mm_3_w = NULL; | |
struct ggml_tensor * mm_3_b = NULL; | |
struct ggml_tensor * mm_4_w = NULL; | |
struct ggml_tensor * mm_4_b = NULL; | |
// MobileVLM projection | |
struct ggml_tensor * mm_model_mlp_1_w; | |
struct ggml_tensor * mm_model_mlp_1_b; | |
struct ggml_tensor * mm_model_mlp_3_w; | |
struct ggml_tensor * mm_model_mlp_3_b; | |
struct ggml_tensor * mm_model_block_1_block_0_0_w; | |
struct ggml_tensor * mm_model_block_1_block_0_1_w; | |
struct ggml_tensor * mm_model_block_1_block_0_1_b; | |
struct ggml_tensor * mm_model_block_1_block_1_fc1_w; | |
struct ggml_tensor * mm_model_block_1_block_1_fc1_b; | |
struct ggml_tensor * mm_model_block_1_block_1_fc2_w; | |
struct ggml_tensor * mm_model_block_1_block_1_fc2_b; | |
struct ggml_tensor * mm_model_block_1_block_2_0_w; | |
struct ggml_tensor * mm_model_block_1_block_2_1_w; | |
struct ggml_tensor * mm_model_block_1_block_2_1_b; | |
struct ggml_tensor * mm_model_block_2_block_0_0_w; | |
struct ggml_tensor * mm_model_block_2_block_0_1_w; | |
struct ggml_tensor * mm_model_block_2_block_0_1_b; | |
struct ggml_tensor * mm_model_block_2_block_1_fc1_w; | |
struct ggml_tensor * mm_model_block_2_block_1_fc1_b; | |
struct ggml_tensor * mm_model_block_2_block_1_fc2_w; | |
struct ggml_tensor * mm_model_block_2_block_1_fc2_b; | |
struct ggml_tensor * mm_model_block_2_block_2_0_w; | |
struct ggml_tensor * mm_model_block_2_block_2_1_w; | |
struct ggml_tensor * mm_model_block_2_block_2_1_b; | |
// MobileVLM_V2 projection | |
struct ggml_tensor * mm_model_mlp_0_w; | |
struct ggml_tensor * mm_model_mlp_0_b; | |
struct ggml_tensor * mm_model_mlp_2_w; | |
struct ggml_tensor * mm_model_mlp_2_b; | |
struct ggml_tensor * mm_model_peg_0_w; | |
struct ggml_tensor * mm_model_peg_0_b; | |
// MINICPMV projection | |
struct ggml_tensor * mm_model_pos_embed_k; | |
struct ggml_tensor * mm_model_query; | |
struct ggml_tensor * mm_model_proj; | |
struct ggml_tensor * mm_model_kv_proj; | |
struct ggml_tensor * mm_model_attn_q_w; | |
struct ggml_tensor * mm_model_attn_q_b; | |
struct ggml_tensor * mm_model_attn_k_w; | |
struct ggml_tensor * mm_model_attn_k_b; | |
struct ggml_tensor * mm_model_attn_v_w; | |
struct ggml_tensor * mm_model_attn_v_b; | |
struct ggml_tensor * mm_model_attn_o_w; | |
struct ggml_tensor * mm_model_attn_o_b; | |
struct ggml_tensor * mm_model_ln_q_w; | |
struct ggml_tensor * mm_model_ln_q_b; | |
struct ggml_tensor * mm_model_ln_kv_w; | |
struct ggml_tensor * mm_model_ln_kv_b; | |
struct ggml_tensor * mm_model_ln_post_w; | |
struct ggml_tensor * mm_model_ln_post_b; | |
}; | |
struct clip_ctx { | |
bool has_text_encoder = false; | |
bool has_vision_encoder = false; | |
bool has_llava_projector = false; | |
bool has_minicpmv_projector = false; | |
int minicpmv_version = 2; | |
struct clip_vision_model vision_model; | |
projector_type proj_type = PROJECTOR_TYPE_MLP; | |
float image_mean[3]; | |
float image_std[3]; | |
bool use_gelu = false; | |
int32_t ftype = 1; | |
bool has_class_embedding = true; | |
bool has_pre_norm = true; | |
bool has_post_norm = false; | |
bool has_patch_bias = false; | |
struct gguf_context * ctx_gguf; | |
struct ggml_context * ctx_data; | |
std::vector<uint8_t> buf_compute_meta; | |
// memory buffers to evaluate the model | |
ggml_backend_buffer_t params_buffer = NULL; | |
ggml_backend_t backend = NULL; | |
ggml_gallocr_t compute_alloc = NULL; | |
struct clip_image_size * load_image_size; | |
}; | |
static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs, struct clip_image_size * load_image_size, bool is_inf = false) { | |
if (!ctx->has_vision_encoder) { | |
LOG_ERR("This gguf file seems to have no vision encoder\n"); | |
return nullptr; | |
} | |
const auto & model = ctx->vision_model; | |
const auto & hparams = model.hparams; | |
const int image_size = hparams.image_size; | |
int image_size_width = image_size; | |
int image_size_height = image_size; | |
if (ctx->has_minicpmv_projector) { | |
if (load_image_size == nullptr) { | |
load_image_size = clip_image_size_init(); | |
} | |
LOG_DBG("%s: %d %d\n", __func__, load_image_size->width, load_image_size->height); | |
image_size_width = load_image_size->width; | |
image_size_height = load_image_size->height; | |
if (is_inf) { | |
image_size_width = imgs->data->nx; | |
image_size_height = imgs->data->ny; | |
} | |
} | |
const int patch_size = hparams.patch_size; | |
const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size)); | |
const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0); | |
const int hidden_size = hparams.hidden_size; | |
const int n_head = hparams.n_head; | |
const int d_head = hidden_size / n_head; | |
int n_layer = hparams.n_layer; | |
const float eps = hparams.eps; | |
const int batch_size = imgs->size; | |
if (ctx->has_llava_projector || ctx->has_minicpmv_projector) { | |
GGML_ASSERT(batch_size == 1); | |
} | |
struct ggml_init_params params = { | |
/*.mem_size =*/ ctx->buf_compute_meta.size(), | |
/*.mem_buffer =*/ ctx->buf_compute_meta.data(), | |
/*.no_alloc =*/ true, | |
}; | |
struct ggml_context * ctx0 = ggml_init(params); | |
struct ggml_cgraph * gf = ggml_new_graph(ctx0); | |
struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3, batch_size); | |
ggml_set_name(inp_raw, "inp_raw"); | |
ggml_set_input(inp_raw); | |
struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings, inp_raw, patch_size, patch_size, 0, 0, 1, 1); | |
inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size); | |
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3)); | |
if (ctx->has_patch_bias) { | |
// inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp)); | |
inp = ggml_add(ctx0, inp, model.patch_bias); | |
} | |
struct ggml_tensor * embeddings = inp; | |
struct ggml_tensor * pos_embed = nullptr; | |
if (ctx->has_llava_projector) { | |
// concat class_embeddings and patch_embeddings | |
if (ctx->has_class_embedding) { | |
embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size); | |
ggml_set_name(embeddings, "embeddings"); | |
ggml_set_input(embeddings); | |
embeddings = ggml_acc(ctx0, embeddings, model.class_embedding, | |
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0); | |
embeddings = ggml_acc(ctx0, embeddings, inp, | |
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]); | |
} | |
} | |
struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions); | |
ggml_set_name(positions, "positions"); | |
ggml_set_input(positions); | |
embeddings = | |
ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions)); | |
if (ctx->has_minicpmv_projector) { | |
int pos_w = image_size_width/patch_size; | |
int pos_h = image_size_height/patch_size; | |
if (ctx->minicpmv_version == 2) { | |
pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 4096, pos_w * pos_h, 1); | |
} | |
else if (ctx->minicpmv_version == 3) { | |
pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1); | |
} | |
ggml_set_name(pos_embed, "pos_embed"); | |
ggml_set_input(pos_embed); | |
} | |
// pre-layernorm | |
if (ctx->has_pre_norm) { | |
embeddings = ggml_norm(ctx0, embeddings, eps); | |
ggml_set_name(embeddings, "pre_ln"); | |
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b); | |
} | |
// loop over layers | |
if (ctx->has_minicpmv_projector) { | |
n_layer += 1; | |
} | |
for (int il = 0; il < n_layer - 1; il++) { | |
struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states | |
//const size_t nb_q_w = model.layers[il].q_w->nb[0]; | |
// layernorm1 | |
{ | |
cur = ggml_norm(ctx0, cur, eps); | |
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w), | |
model.layers[il].ln_1_b); | |
} | |
// self-attention | |
{ | |
struct ggml_tensor * Q = | |
ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b); | |
Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head)); | |
Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size); | |
Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3)); | |
Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size); | |
struct ggml_tensor * K = | |
ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b); | |
K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size); | |
K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3)); | |
K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size); | |
struct ggml_tensor * V = | |
ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b); | |
V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size); | |
V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3)); | |
V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size); | |
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); | |
KQ = ggml_soft_max_inplace(ctx0, KQ); | |
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ); | |
KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size); | |
KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3); | |
cur = ggml_cont_3d(ctx0, KQV, hidden_size, num_positions, batch_size); | |
} | |
// attention output | |
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b); | |
// re-add the layer input, e.g., residual | |
cur = ggml_add(ctx0, cur, embeddings); | |
embeddings = cur; // embeddings = residual, cur = hidden_states | |
// layernorm2 | |
{ | |
cur = ggml_norm(ctx0, cur, eps); | |
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b); | |
} | |
cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur); | |
cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b); | |
if (ctx->use_gelu) { | |
cur = ggml_gelu_inplace(ctx0, cur); | |
} else { | |
cur = ggml_gelu_quick_inplace(ctx0, cur); | |
} | |
cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur); | |
cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b); | |
// residual 2 | |
cur = ggml_add(ctx0, embeddings, cur); | |
embeddings = cur; | |
} | |
// post-layernorm | |
if (ctx->has_post_norm) { | |
embeddings = ggml_norm(ctx0, embeddings, eps); | |
ggml_set_name(embeddings, "post_ln"); | |
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b); | |
} | |
// llava projector | |
if (ctx->has_llava_projector) { | |
embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]); | |
struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches); | |
ggml_set_name(patches, "patches"); | |
ggml_set_input(patches); | |
// shape [1, 576, 1024] | |
// ne is whcn, ne = [1024, 576, 1, 1] | |
embeddings = ggml_get_rows(ctx0, embeddings, patches); | |
// print_tensor_info(embeddings, "embeddings"); | |
// llava projector | |
if (ctx->proj_type == PROJECTOR_TYPE_MLP) { | |
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings); | |
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b); | |
embeddings = ggml_gelu(ctx0, embeddings); | |
embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings); | |
embeddings = ggml_add(ctx0, embeddings, model.mm_2_b); | |
} | |
else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) { | |
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings); | |
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b); | |
// ggml_tensor_printf(embeddings, "mm_0_w",0,true,false); | |
// First LayerNorm | |
embeddings = ggml_norm(ctx0, embeddings, eps); | |
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w), | |
model.mm_1_b); | |
// GELU activation | |
embeddings = ggml_gelu(ctx0, embeddings); | |
// Second linear layer | |
embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings); | |
embeddings = ggml_add(ctx0, embeddings, model.mm_3_b); | |
// Second LayerNorm | |
embeddings = ggml_norm(ctx0, embeddings, eps); | |
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w), | |
model.mm_4_b); | |
} | |
else if (ctx->proj_type == PROJECTOR_TYPE_LDP) { | |
// MobileVLM projector | |
int n_patch = 24; | |
struct ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings); | |
mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b); | |
mlp_1 = ggml_gelu(ctx0, mlp_1); | |
struct ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1); | |
mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b); | |
// mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1] | |
// block 1 | |
struct ggml_tensor * block_1 = nullptr; | |
{ | |
// transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24] | |
mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3)); | |
mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]); | |
// stride = 1, padding = 1, bias is nullptr | |
block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1); | |
// layer norm | |
// // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1] | |
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3)); | |
// block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1] | |
block_1 = ggml_norm(ctx0, block_1, eps); | |
block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b); | |
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3)); | |
// block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1] | |
// hardswish | |
struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1); | |
block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0); | |
// block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1] | |
// pointwise conv | |
block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]); | |
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1); | |
block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b); | |
block_1 = ggml_relu(ctx0, block_1); | |
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1); | |
block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b); | |
block_1 = ggml_hardsigmoid(ctx0, block_1); | |
// block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1] | |
block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]); | |
block_1 = ggml_mul(ctx0, block_1_hw, block_1); | |
int w = block_1->ne[0], h = block_1->ne[1]; | |
block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]); | |
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3)); | |
// block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1] | |
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1); | |
block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]); | |
// block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1] | |
block_1 = ggml_norm(ctx0, block_1, eps); | |
block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b); | |
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3)); | |
// block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1] | |
// residual | |
block_1 = ggml_add(ctx0, mlp_3, block_1); | |
} | |
// block_2 | |
{ | |
// stride = 2 | |
block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1); | |
// block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1] | |
// layer norm | |
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3)); | |
// block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1] | |
block_1 = ggml_norm(ctx0, block_1, eps); | |
block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b); | |
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3)); | |
// block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1] | |
// hardswish | |
struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1); | |
// not sure the parameters is right for globalAvgPooling | |
block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0); | |
// block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1] | |
// pointwise conv | |
block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]); | |
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1); | |
block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b); | |
block_1 = ggml_relu(ctx0, block_1); | |
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1); | |
block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b); | |
block_1 = ggml_hardsigmoid(ctx0, block_1); | |
// block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1] | |
block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]); | |
block_1 = ggml_mul(ctx0, block_1_hw, block_1); | |
int w = block_1->ne[0], h = block_1->ne[1]; | |
block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]); | |
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3)); | |
// block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1] | |
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1); | |
block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]); | |
// block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1] | |
block_1 = ggml_norm(ctx0, block_1, eps); | |
block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b); | |
block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]); | |
// block_1 shape = [1, 144, 2048], ne = [2048, 144, 1] | |
} | |
embeddings = block_1; | |
} | |
else if (ctx->proj_type == PROJECTOR_TYPE_LDPV2) | |
{ | |
int n_patch = 24; | |
struct ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings); | |
mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b); | |
mlp_0 = ggml_gelu(ctx0, mlp_0); | |
struct ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0); | |
mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b); | |
// mlp_2 ne = [2048, 576, 1, 1] | |
// // AVG Pool Layer 2*2, strides = 2 | |
mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 0, 2, 3)); | |
// mlp_2 ne = [576, 2048, 1, 1] | |
mlp_2 = ggml_reshape_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]); | |
// mlp_2 ne [24, 24, 2048, 1] | |
mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0); | |
// weight ne = [3, 3, 2048, 1] | |
struct ggml_tensor * peg_0 = ggml_conv_depthwise_2d(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1); | |
peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3)); | |
peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b); | |
mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3)); | |
peg_0 = ggml_add(ctx0, peg_0, mlp_2); | |
peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]); | |
embeddings = peg_0; | |
} | |
else { | |
GGML_ABORT("fatal error"); | |
} | |
} | |
// minicpmv projector | |
else if (ctx->has_minicpmv_projector) | |
{ | |
if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) { | |
struct ggml_tensor * q = model.mm_model_query; | |
{ // layernorm | |
q = ggml_norm(ctx0, q, eps); | |
q = ggml_add(ctx0, ggml_mul(ctx0, q, model.mm_model_ln_q_w), model.mm_model_ln_q_b); | |
} | |
struct ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings); | |
{ // layernorm | |
v = ggml_norm(ctx0, v, eps); | |
v = ggml_add(ctx0, ggml_mul(ctx0, v, model.mm_model_ln_kv_w), model.mm_model_ln_kv_b); | |
} | |
struct ggml_tensor * k; | |
{ // position | |
// q = ggml_add(ctx0, q, model.mm_model_pos_embed); | |
k = ggml_add(ctx0, v, pos_embed); | |
} | |
{ // attention | |
int hidden_size = 4096; | |
const int d_head = 128; | |
int n_head = hidden_size/d_head; | |
int num_query = 96; | |
if (ctx->minicpmv_version == 2) { | |
hidden_size = 4096; | |
n_head = hidden_size/d_head; | |
num_query = 96; | |
} | |
else if (ctx->minicpmv_version == 3) { | |
hidden_size = 3584; | |
n_head = hidden_size/d_head; | |
num_query = 64; | |
} | |
struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q), model.mm_model_attn_q_b); | |
Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head)); | |
struct ggml_tensor * K = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k), model.mm_model_attn_k_b); | |
struct ggml_tensor * V = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v), model.mm_model_attn_v_b); | |
// permute | |
Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_query, batch_size); | |
Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3)); | |
Q = ggml_reshape_3d(ctx0, Q, d_head, num_query, n_head * batch_size); | |
K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size); | |
K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3)); | |
K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size); | |
V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size); | |
V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3)); | |
V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size); | |
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); | |
KQ = ggml_soft_max_inplace(ctx0, KQ); | |
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ); | |
KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_query, n_head, batch_size); | |
KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3); | |
KQV = ggml_cont_3d(ctx0, KQV, hidden_size, num_query, batch_size); | |
embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_o_w, KQV), model.mm_model_attn_o_b); | |
} | |
{ // layernorm | |
embeddings = ggml_norm(ctx0, embeddings, eps); | |
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_post_w), model.mm_model_ln_post_b); | |
} | |
embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings); | |
} | |
else { | |
GGML_ASSERT(false); | |
} | |
} | |
// build the graph | |
ggml_build_forward_expand(gf, embeddings); | |
ggml_free(ctx0); | |
return gf; | |
} | |
// read and create ggml_context containing the tensors and their data | |
struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { | |
struct ggml_context * meta = NULL; | |
struct gguf_init_params params = { | |
/*.no_alloc = */ true, | |
/*.ctx = */ &meta, | |
}; | |
struct gguf_context * ctx = gguf_init_from_file(fname, params); | |
if (!ctx) { | |
throw std::runtime_error(format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname)); | |
} | |
if (verbosity >= 1) { | |
const int n_tensors = gguf_get_n_tensors(ctx); | |
const int n_kv = gguf_get_n_kv(ctx); | |
const int ftype = get_u32(ctx, KEY_FTYPE); | |
const std::string ftype_str = get_ftype(ftype); | |
const int idx_desc = get_key_idx(ctx, KEY_DESCRIPTION); | |
const std::string description = gguf_get_val_str(ctx, idx_desc); | |
const int idx_name = gguf_find_key(ctx, KEY_NAME); | |
if (idx_name != -1) { // make name optional temporarily as some of the uploaded models missing it due to a bug | |
const std::string name = gguf_get_val_str(ctx, idx_name); | |
LOG_INF("%s: model name: %s\n", __func__, name.c_str()); | |
} | |
LOG_INF("%s: description: %s\n", __func__, description.c_str()); | |
LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx)); | |
LOG_INF("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx)); | |
LOG_INF("%s: n_tensors: %d\n", __func__, n_tensors); | |
LOG_INF("%s: n_kv: %d\n", __func__, n_kv); | |
LOG_INF("%s: ftype: %s\n", __func__, ftype_str.c_str()); | |
LOG_INF("\n"); | |
} | |
const int n_tensors = gguf_get_n_tensors(ctx); | |
// kv | |
const int n_kv = gguf_get_n_kv(ctx); | |
LOG_INF("%s: loaded meta data with %d key-value pairs and %d tensors from %s\n", | |
__func__, n_kv, n_tensors, fname); | |
{ | |
std::map<enum ggml_type, uint32_t> n_type; | |
for (int i = 0; i < n_tensors; i++) { | |
enum ggml_type type = gguf_get_tensor_type(ctx, i); | |
n_type[type]++; | |
} | |
LOG_INF("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__); | |
for (int i = 0; i < n_kv; i++) { | |
const char * name = gguf_get_key(ctx, i); | |
const enum gguf_type type = gguf_get_kv_type(ctx, i); | |
const std::string type_name = | |
type == GGUF_TYPE_ARRAY | |
? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(ctx, i)), gguf_get_arr_n(ctx, i)) | |
: gguf_type_name(type); | |
std::string value = gguf_kv_to_str(ctx, i); | |
const size_t MAX_VALUE_LEN = 40; | |
if (value.size() > MAX_VALUE_LEN) { | |
value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str()); | |
} | |
replace_all(value, "\n", "\\n"); | |
LOG_INF("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str()); | |
} | |
// print type counts | |
for (auto & kv : n_type) { | |
if (kv.second == 0) { | |
continue; | |
} | |
LOG_INF("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second); | |
} | |
} | |
// data | |
size_t model_size = 0; | |
{ | |
for (int i = 0; i < n_tensors; ++i) { | |
const char * name = gguf_get_tensor_name(ctx, i); | |
const size_t offset = gguf_get_tensor_offset(ctx, i); | |
enum ggml_type type = gguf_get_tensor_type(ctx, i); | |
struct ggml_tensor * cur = ggml_get_tensor(meta, name); | |
size_t tensor_size = ggml_nbytes(cur); | |
model_size += tensor_size; | |
if (verbosity >= 3) { | |
LOG_INF("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n", | |
__func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type)); | |
} | |
} | |
} | |
clip_ctx * new_clip = new clip_ctx{}; | |
// update projector type | |
{ | |
int idx = gguf_find_key(ctx, KEY_PROJ_TYPE); | |
if (idx != -1) { | |
const std::string proj_type = gguf_get_val_str(ctx, idx); | |
new_clip->proj_type = clip_projector_type_from_string(proj_type); | |
} else { | |
new_clip->proj_type = PROJECTOR_TYPE_MLP; | |
} | |
if (new_clip->proj_type == PROJECTOR_TYPE_MLP) { | |
if (gguf_find_tensor(ctx, format(TN_LLAVA_PROJ, 3, "weight").c_str()) != -1) { | |
new_clip->proj_type = PROJECTOR_TYPE_MLP_NORM; | |
} | |
} | |
} | |
new_clip->backend = ggml_backend_cuda_init(0); | |
LOG_INF("%s: CLIP using CUDA backend\n", __func__); | |
new_clip->backend = ggml_backend_metal_init(); | |
LOG_INF("%s: CLIP using Metal backend\n", __func__); | |
new_clip->backend = ggml_backend_cann_init(0); | |
LOG_INF("%s: CLIP using CANN backend\n", __func__); | |
new_clip->backend = ggml_backend_vk_init(0); | |
LOG_INF("%s: CLIP using Vulkan backend\n", __func__); | |
if (!new_clip->backend) { | |
new_clip->backend = ggml_backend_cpu_init(); | |
LOG_INF("%s: CLIP using CPU backend\n", __func__); | |
} | |
// model size and capabilities | |
{ | |
int idx = get_key_idx(ctx, KEY_HAS_TEXT_ENC); | |
new_clip->has_text_encoder = gguf_get_val_bool(ctx, idx); | |
idx = get_key_idx(ctx, KEY_HAS_VIS_ENC); | |
new_clip->has_vision_encoder = gguf_get_val_bool(ctx, idx); | |
idx = gguf_find_key(ctx, KEY_HAS_LLAVA_PROJ); | |
if (idx != -1) { | |
new_clip->has_llava_projector = gguf_get_val_bool(ctx, idx); | |
} | |
idx = gguf_find_key(ctx, KEY_HAS_MINICPMV_PROJ); | |
if (idx != -1) { | |
new_clip->has_minicpmv_projector = gguf_get_val_bool(ctx, idx); | |
} | |
idx = gguf_find_key(ctx, KEY_MINICPMV_VERSION); | |
if (idx != -1) { | |
new_clip->minicpmv_version = gguf_get_val_i32(ctx, idx); | |
} | |
// GGML_ASSERT(new_clip->has_llava_projector); // see monatis/clip.cpp for image and/or text encoding for semantic search | |
GGML_ASSERT(new_clip->has_vision_encoder); | |
GGML_ASSERT(!new_clip->has_text_encoder); | |
idx = get_key_idx(ctx, KEY_USE_GELU); | |
new_clip->use_gelu = gguf_get_val_bool(ctx, idx); | |
if (verbosity >= 1) { | |
LOG_INF("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder); | |
LOG_INF("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder); | |
LOG_INF("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector); | |
LOG_INF("%s: minicpmv_projector: %d\n", __func__, new_clip->has_minicpmv_projector); | |
LOG_INF("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0); | |
LOG_INF("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0); | |
} | |
} | |
LOG_INF("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, model_size / (1024.0 * 1024.0), n_tensors); | |
// load tensors | |
{ | |
std::vector<uint8_t> read_buf; | |
struct ggml_init_params params = { | |
/*.mem_size =*/ (n_tensors + 1) * ggml_tensor_overhead(), | |
/*.mem_buffer =*/ NULL, | |
/*.no_alloc =*/ true, | |
}; | |
new_clip->ctx_data = ggml_init(params); | |
if (!new_clip->ctx_data) { | |
LOG_ERR("%s: ggml_init() failed\n", __func__); | |
clip_free(new_clip); | |
gguf_free(ctx); | |
return nullptr; | |
} | |
auto fin = std::ifstream(fname, std::ios::binary); | |
if (!fin) { | |
LOG_ERR("cannot open model file for loading tensors\n"); | |
clip_free(new_clip); | |
gguf_free(ctx); | |
return nullptr; | |
} | |
// add tensors to context | |
for (int i = 0; i < n_tensors; ++i) { | |
const char * name = gguf_get_tensor_name(ctx, i); | |
struct ggml_tensor * t = ggml_get_tensor(meta, name); | |
struct ggml_tensor * cur = ggml_dup_tensor(new_clip->ctx_data, t); | |
ggml_set_name(cur, name); | |
} | |
// alloc memory and offload data | |
new_clip->params_buffer = ggml_backend_alloc_ctx_tensors(new_clip->ctx_data, new_clip->backend); | |
for (int i = 0; i < n_tensors; ++i) { | |
const char * name = gguf_get_tensor_name(ctx, i); | |
struct ggml_tensor * cur = ggml_get_tensor(new_clip->ctx_data, name); | |
const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i); | |
fin.seekg(offset, std::ios::beg); | |
if (!fin) { | |
LOG_ERR("%s: failed to seek for tensor %s\n", __func__, name); | |
clip_free(new_clip); | |
gguf_free(ctx); | |
return nullptr; | |
} | |
int num_bytes = ggml_nbytes(cur); | |
if (ggml_backend_buffer_is_host(new_clip->params_buffer)) { | |
// for the CPU and Metal backend, we can read directly into the tensor | |
fin.read(reinterpret_cast<char *>(cur->data), num_bytes); | |
} else { | |
// read into a temporary buffer first, then copy to device memory | |
read_buf.resize(num_bytes); | |
fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes); | |
ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes); | |
} | |
} | |
fin.close(); | |
} | |
// vision model | |
if (new_clip->has_vision_encoder) { | |
// load vision model | |
auto & vision_model = new_clip->vision_model; | |
auto & hparams = vision_model.hparams; | |
hparams.hidden_size = get_u32(ctx, format(KEY_N_EMBD, "vision")); | |
hparams.n_head = get_u32(ctx, format(KEY_N_HEAD, "vision")); | |
hparams.n_intermediate = get_u32(ctx, format(KEY_N_FF, "vision")); | |
hparams.n_layer = get_u32(ctx, format(KEY_N_BLOCK, "vision")); | |
hparams.image_size = get_u32(ctx, KEY_IMAGE_SIZE); | |
hparams.patch_size = get_u32(ctx, KEY_PATCH_SIZE); | |
hparams.projection_dim = get_u32(ctx, format(KEY_PROJ_DIM, "vision")); | |
hparams.eps = get_f32(ctx, format(KEY_LAYER_NORM_EPS, "vision")); | |
try { | |
int idx = get_key_idx(ctx, KEY_IMAGE_GRID_PINPOINTS); | |
int n = gguf_get_arr_n(ctx, idx); | |
const int32_t * pinpoints = (const int32_t *)gguf_get_arr_data(ctx, idx); | |
for (int i = 0; i < 32 && i < n && pinpoints[i] != 0; ++i) { | |
hparams.image_grid_pinpoints[i] = pinpoints[i]; | |
} | |
if (n < 32) | |
hparams.image_grid_pinpoints[n] = 0; | |
} catch (std::runtime_error & /*e*/) { | |
hparams.image_grid_pinpoints[0]=0; | |
} | |
try { | |
int idx = get_key_idx(ctx, KEY_MM_PATCH_MERGE_TYPE); | |
strcpy(hparams.mm_patch_merge_type, gguf_get_val_str(ctx, idx)); | |
} catch (std::runtime_error & /*e*/) { | |
strcpy(hparams.mm_patch_merge_type, "flat"); | |
} | |
try { | |
hparams.image_crop_resolution = get_u32(ctx, KEY_IMAGE_CROP_RESOLUTION); // llava-1.6 | |
} catch(const std::exception& /*e*/) { | |
hparams.image_crop_resolution = hparams.image_size; | |
} | |
int idx_mean = get_key_idx(ctx, KEY_IMAGE_MEAN); | |
int idx_std = get_key_idx(ctx, KEY_IMAGE_STD); | |
const float * mean_data = (const float *)gguf_get_arr_data(ctx, idx_mean); | |
const float * std_data = (const float *)gguf_get_arr_data(ctx, idx_std); | |
for (int i = 0; i < 3; ++i) { | |
new_clip->image_mean[i] = mean_data[i]; | |
new_clip->image_std[i] = std_data[i]; | |
} | |
if (verbosity >= 2) { | |
LOG_INF("\n%s: vision model hparams\n", __func__); | |
LOG_INF("image_size %d\n", hparams.image_size); | |
LOG_INF("patch_size %d\n", hparams.patch_size); | |
LOG_INF("v_hidden_size %d\n", hparams.hidden_size); | |
LOG_INF("v_n_intermediate %d\n", hparams.n_intermediate); | |
LOG_INF("v_projection_dim %d\n", hparams.projection_dim); | |
LOG_INF("v_n_head %d\n", hparams.n_head); | |
LOG_INF("v_n_layer %d\n", hparams.n_layer); | |
LOG_INF("v_eps %f\n", hparams.eps); | |
LOG_INF("v_image_mean %f %f %f\n", new_clip->image_mean[0], new_clip->image_mean[1], new_clip->image_mean[2]); | |
LOG_INF("v_image_std %f %f %f\n", new_clip->image_std[0], new_clip->image_std[1], new_clip->image_std[2]); | |
LOG_INF("v_image_grid_pinpoints: "); | |
for (int i = 0; i < 32 && (hparams.image_grid_pinpoints[i] != 0); ++i) { | |
LOG_INF("%d ", hparams.image_grid_pinpoints[i]); | |
} | |
LOG_INF("\n"); | |
LOG_INF("v_mm_patch_merge_type: %s\n", hparams.mm_patch_merge_type); | |
} | |
try { | |
vision_model.class_embedding = get_tensor(new_clip->ctx_data, TN_CLASS_EMBD); | |
new_clip->has_class_embedding = true; | |
} catch (const std::exception& /*e*/) { | |
new_clip->has_class_embedding = false; | |
} | |
try { | |
vision_model.pre_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight")); | |
vision_model.pre_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias")); | |
new_clip->has_pre_norm = true; | |
} catch (std::exception & /*e*/) { | |
new_clip->has_pre_norm = false; | |
} | |
try { | |
vision_model.post_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "weight")); | |
vision_model.post_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "bias")); | |
new_clip->has_post_norm = true; | |
} catch (std::exception & /*e*/) { | |
new_clip->has_post_norm = false; | |
} | |
try { | |
vision_model.patch_bias = get_tensor(new_clip->ctx_data, TN_PATCH_BIAS); | |
new_clip->has_patch_bias = true; | |
} catch (std::exception & /*e*/) { | |
new_clip->has_patch_bias = false; | |
} | |
try { | |
vision_model.patch_embeddings = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD); | |
vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v")); | |
} catch(const std::exception& /*e*/) { | |
LOG_ERR("%s: failed to load vision model tensors\n", __func__); | |
} | |
// LLaVA projection | |
if (new_clip->proj_type == PROJECTOR_TYPE_MLP || new_clip->proj_type == PROJECTOR_TYPE_MLP_NORM) { | |
vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight")); | |
vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias")); | |
try { | |
// Yi-type llava | |
vision_model.mm_1_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "weight")); | |
vision_model.mm_1_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "bias")); | |
} catch (std::runtime_error & /*e*/) { } | |
try { | |
// missing in Yi-type llava | |
vision_model.mm_2_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight")); | |
vision_model.mm_2_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias")); | |
} catch (std::runtime_error & /*e*/) { } | |
try { | |
// Yi-type llava | |
vision_model.mm_3_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "weight")); | |
vision_model.mm_3_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "bias")); | |
} catch (std::runtime_error & /*e*/) { } | |
try { | |
// Yi-type llava | |
vision_model.mm_4_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "weight")); | |
vision_model.mm_4_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "bias")); | |
} catch (std::runtime_error & /*e*/) { } | |
try { | |
vision_model.image_newline = get_tensor(new_clip->ctx_data, TN_IMAGE_NEWLINE); | |
// LOG_INF("%s: image_newline tensor (llava-1.6) found\n", __func__); | |
} catch (std::runtime_error & /*e*/) { } | |
} else if (new_clip->proj_type == PROJECTOR_TYPE_LDP) { | |
// MobileVLM projection | |
vision_model.mm_model_mlp_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "weight")); | |
vision_model.mm_model_mlp_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "bias")); | |
vision_model.mm_model_mlp_3_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "weight")); | |
vision_model.mm_model_mlp_3_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "bias")); | |
vision_model.mm_model_block_1_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight")); | |
vision_model.mm_model_block_1_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight")); | |
vision_model.mm_model_block_1_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias")); | |
vision_model.mm_model_block_1_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight")); | |
vision_model.mm_model_block_1_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias")); | |
vision_model.mm_model_block_1_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight")); | |
vision_model.mm_model_block_1_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias")); | |
vision_model.mm_model_block_1_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight")); | |
vision_model.mm_model_block_1_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight")); | |
vision_model.mm_model_block_1_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias")); | |
vision_model.mm_model_block_2_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight")); | |
vision_model.mm_model_block_2_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight")); | |
vision_model.mm_model_block_2_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias")); | |
vision_model.mm_model_block_2_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight")); | |
vision_model.mm_model_block_2_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias")); | |
vision_model.mm_model_block_2_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight")); | |
vision_model.mm_model_block_2_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias")); | |
vision_model.mm_model_block_2_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight")); | |
vision_model.mm_model_block_2_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight")); | |
vision_model.mm_model_block_2_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias")); | |
} | |
else if (new_clip->proj_type == PROJECTOR_TYPE_LDPV2) | |
{ | |
// MobilVLM_V2 projection | |
vision_model.mm_model_mlp_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 0, "weight")); | |
vision_model.mm_model_mlp_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 0, "bias")); | |
vision_model.mm_model_mlp_2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 2, "weight")); | |
vision_model.mm_model_mlp_2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 2, "bias")); | |
vision_model.mm_model_peg_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "weight")); | |
vision_model.mm_model_peg_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "bias")); | |
} | |
else if (new_clip->proj_type == PROJECTOR_TYPE_RESAMPLER) { | |
// vision_model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD); | |
vision_model.mm_model_pos_embed_k = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD_K); | |
vision_model.mm_model_query = get_tensor(new_clip->ctx_data, TN_MINICPMV_QUERY); | |
vision_model.mm_model_proj = get_tensor(new_clip->ctx_data, TN_MINICPMV_PROJ); | |
vision_model.mm_model_kv_proj = get_tensor(new_clip->ctx_data, TN_MINICPMV_KV_PROJ); | |
vision_model.mm_model_attn_q_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "q", "weight")); | |
vision_model.mm_model_attn_k_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "k", "weight")); | |
vision_model.mm_model_attn_v_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "v", "weight")); | |
vision_model.mm_model_attn_q_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "q", "bias")); | |
vision_model.mm_model_attn_k_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "k", "bias")); | |
vision_model.mm_model_attn_v_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "v", "bias")); | |
vision_model.mm_model_attn_o_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "out", "weight")); | |
vision_model.mm_model_attn_o_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "out", "bias")); | |
vision_model.mm_model_ln_q_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "q", "weight")); | |
vision_model.mm_model_ln_q_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "q", "bias")); | |
vision_model.mm_model_ln_kv_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "kv", "weight")); | |
vision_model.mm_model_ln_kv_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "kv", "bias")); | |
vision_model.mm_model_ln_post_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "weight")); | |
vision_model.mm_model_ln_post_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "bias")); | |
} | |
else { | |
std::string proj_type = PROJECTOR_TYPE_NAMES[new_clip->proj_type]; | |
throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str())); | |
} | |
vision_model.layers.resize(hparams.n_layer); | |
for (int il = 0; il < hparams.n_layer; ++il) { | |
auto & layer = vision_model.layers[il]; | |
layer.k_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_K, "v", il, "weight")); | |
layer.q_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q, "v", il, "weight")); | |
layer.v_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_V, "v", il, "weight")); | |
layer.o_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "weight")); | |
layer.ln_1_w = get_tensor(new_clip->ctx_data, format(TN_LN_1, "v", il, "weight")); | |
layer.ln_2_w = get_tensor(new_clip->ctx_data, format(TN_LN_2, "v", il, "weight")); | |
layer.ff_i_w = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN, "v", il, "weight")); | |
layer.ff_o_w = get_tensor(new_clip->ctx_data, format(TN_FFN_UP, "v", il, "weight")); | |
layer.k_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_K, "v", il, "bias")); | |
layer.q_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q, "v", il, "bias")); | |
layer.v_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_V, "v", il, "bias")); | |
layer.o_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "bias")); | |
layer.ln_1_b = get_tensor(new_clip->ctx_data, format(TN_LN_1, "v", il, "bias")); | |
layer.ln_2_b = get_tensor(new_clip->ctx_data, format(TN_LN_2, "v", il, "bias")); | |
layer.ff_i_b = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN, "v", il, "bias")); | |
layer.ff_o_b = get_tensor(new_clip->ctx_data, format(TN_FFN_UP, "v", il, "bias")); | |
} | |
} | |
ggml_free(meta); | |
new_clip->ctx_gguf = ctx; | |
// measure mem requirement and allocate | |
{ | |
new_clip->buf_compute_meta.resize(GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead()); | |
new_clip->compute_alloc = ggml_gallocr_new(ggml_backend_get_default_buffer_type(new_clip->backend)); | |
clip_image_f32_batch batch; | |
batch.size = 1; | |
ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch, nullptr, false); | |
ggml_gallocr_reserve(new_clip->compute_alloc, gf); | |
size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_clip->compute_alloc, 0); | |
LOG_INF("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0); | |
} | |
return new_clip; | |
} | |
void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size) { | |
ctx_clip->load_image_size = load_image_size; | |
} | |
struct clip_image_size * clip_image_size_init() { | |
struct clip_image_size * load_image_size = new struct clip_image_size(); | |
load_image_size->width = 448; | |
load_image_size->height = 448; | |
return load_image_size; | |
} | |
struct clip_image_u8 * clip_image_u8_init() { | |
return new clip_image_u8(); | |
} | |
struct clip_image_f32 * clip_image_f32_init() { | |
return new clip_image_f32(); | |
} | |
void clip_image_u8_free(struct clip_image_u8 * img) { delete img; } | |
void clip_image_f32_free(struct clip_image_f32 * img) { delete img; } | |
void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { | |
if (batch->size > 0) { | |
delete[] batch->data; | |
batch->size = 0; | |
} | |
} | |
void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { | |
if (batch->size > 0) { | |
delete[] batch->data; | |
batch->size = 0; | |
} | |
} | |
static void build_clip_img_from_data(const stbi_uc * data, int nx, int ny, clip_image_u8 * img) { | |
img->nx = nx; | |
img->ny = ny; | |
img->buf.resize(3 * nx * ny); | |
memcpy(img->buf.data(), data, img->buf.size()); | |
} | |
bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) { | |
int nx, ny, nc; | |
auto * data = stbi_load(fname, &nx, &ny, &nc, 3); | |
if (!data) { | |
LOG_ERR("%s: failed to load image '%s'\n", __func__, fname); | |
return false; | |
} | |
build_clip_img_from_data(data, nx, ny, img); | |
stbi_image_free(data); | |
return true; | |
} | |
bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img) { | |
int nx, ny, nc; | |
auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3); | |
if (!data) { | |
LOG_ERR("%s: failed to decode image bytes\n", __func__); | |
return false; | |
} | |
build_clip_img_from_data(data, nx, ny, img); | |
stbi_image_free(data); | |
return true; | |
} | |
// Linear interpolation between two points | |
inline float clip_lerp(float s, float e, float t) { | |
return s + (e - s) * t; | |
} | |
// Bilinear resize function | |
static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) { | |
dst.nx = target_width; | |
dst.ny = target_height; | |
dst.buf.resize(3 * target_width * target_height); | |
float x_ratio = static_cast<float>(src.nx - 1) / target_width; | |
float y_ratio = static_cast<float>(src.ny - 1) / target_height; | |
for (int y = 0; y < target_height; y++) { | |
for (int x = 0; x < target_width; x++) { | |
float px = x_ratio * x; | |
float py = y_ratio * y; | |
int x_floor = static_cast<int>(px); | |
int y_floor = static_cast<int>(py); | |
float x_lerp = px - x_floor; | |
float y_lerp = py - y_floor; | |
for (int c = 0; c < 3; c++) { | |
float top = clip_lerp( | |
static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]), | |
static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]), | |
x_lerp | |
); | |
float bottom = clip_lerp( | |
static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]), | |
static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]), | |
x_lerp | |
); | |
dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(clip_lerp(top, bottom, y_lerp)); | |
} | |
} | |
} | |
} | |
// Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not | |
static void normalize_image_u8_to_f32(const clip_image_u8* src, clip_image_f32* dst, const float mean[3], const float std[3]) { | |
dst->nx = src->nx; | |
dst->ny = src->ny; | |
dst->buf.resize(src->buf.size()); | |
for (size_t i = 0; i < src->buf.size(); ++i) { | |
int c = i % 3; // rgb | |
dst->buf[i] = (static_cast<float>(src->buf[i]) / 255.0f - mean[c]) / std[c]; | |
} | |
} | |
inline int clip(int x, int lower, int upper) { | |
return std::max(lower, std::min(x, upper)); | |
} | |
static bool bicubic_resize(const clip_image_u8 &img, clip_image_u8 &dst, int target_width, int target_height) { | |
const int nx = img.nx; | |
const int ny = img.ny; | |
dst.nx = target_width; | |
dst.ny = target_height; | |
dst.buf.resize(3 * target_width * target_height); | |
float Cc; | |
float C[5]; | |
float d0, d2, d3, a0, a1, a2, a3; | |
int i, j, k, jj; | |
int x, y; | |
float dx, dy; | |
float tx, ty; | |
tx = (float)nx / (float)target_width; | |
ty = (float)ny / (float)target_height; | |
// Bicubic interpolation; adapted from ViT.cpp, inspired from : | |
// -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36 | |
// -> https://en.wikipedia.org/wiki/Bicubic_interpolation | |
for (i = 0; i < target_height; i++) { | |
for (j = 0; j < target_width; j++) { | |
x = (int)(tx * j); | |
y = (int)(ty * i); | |
dx = tx * j - x; | |
dy = ty * i - y; | |
for (k = 0; k < 3; k++) { | |
for (jj = 0; jj <= 3; jj++) { | |
d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; | |
d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; | |
d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; | |
a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; | |
a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3; | |
a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2; | |
a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3; | |
C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx; | |
d0 = C[0] - C[1]; | |
d2 = C[2] - C[1]; | |
d3 = C[3] - C[1]; | |
a0 = C[1]; | |
a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3; | |
a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2; | |
a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3; | |
Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy; | |
const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f); | |
dst.buf[(i * target_width + j) * 3 + k] = float(Cc2); | |
} | |
} | |
} | |
} | |
return true; | |
} | |
// llava-1.6 type of resize_and_pad (black) | |
static void resize_and_pad_image(const clip_image_u8& image, clip_image_u8 &image_output, const std::pair<int, int>& target_resolution) { | |
int target_width = target_resolution.first; | |
int target_height = target_resolution.second; | |
float scale_w = static_cast<float>(target_width) / image.nx; | |
float scale_h = static_cast<float>(target_height) / image.ny; | |
int new_width, new_height; | |
if (scale_w < scale_h) { | |
new_width = target_width; | |
new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height); | |
} else { | |
new_height = target_height; | |
new_width = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width); | |
} | |
clip_image_u8 resized_image; | |
// bilinear_resize(image, resized_image, new_width, new_height); | |
bicubic_resize(image, resized_image, new_width, new_height); | |
clip_image_u8 padded_image; | |
padded_image.nx = target_width; | |
padded_image.ny = target_height; | |
padded_image.buf.resize(3 * target_width * target_height, 0); // Initialize with black | |
// Calculate padding offsets | |
int pad_x = (target_width - new_width) / 2; | |
int pad_y = (target_height - new_height) / 2; | |
// Copy the resized image into the center of the padded buffer | |
for (int y = 0; y < new_height; ++y) { | |
for (int x = 0; x < new_width; ++x) { | |
for (int c = 0; c < 3; ++c) { | |
padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c]; | |
} | |
} | |
} | |
image_output = std::move(padded_image); | |
} | |
/** | |
* Selects the best resolution from a list of possible resolutions based on the original size. | |
* | |
* @param original_size The original size of the image in the format (width, height). | |
* @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...]. | |
* @return The best fit resolution in the format (width, height). | |
*/ | |
static std::pair<int, int> select_best_resolution(const std::pair<int, int> & original_size, const std::vector<std::pair<int, int>> & possible_resolutions) { | |
int original_width = original_size.first; | |
int original_height = original_size.second; | |
std::pair<int, int> best_fit; | |
int max_effective_resolution = 0; | |
int min_wasted_resolution = std::numeric_limits<int>::max(); | |
for (const auto& resolution : possible_resolutions) { | |
int width = resolution.first; | |
int height = resolution.second; | |
float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height); | |
int downscaled_width = static_cast<int>(original_width * scale); | |
int downscaled_height = static_cast<int>(original_height * scale); | |
int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height); | |
int wasted_resolution = (width * height) - effective_resolution; | |
// LOG_INF("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution); | |
if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) { | |
max_effective_resolution = effective_resolution; | |
min_wasted_resolution = wasted_resolution; | |
best_fit = resolution; | |
} | |
} | |
return best_fit; | |
} | |
static std::vector<clip_image_u8*> divide_to_patches_u8(const clip_image_u8 & image, int patch_size) { | |
std::vector<clip_image_u8*> patches; | |
int width = image.nx; | |
int height = image.ny; | |
for (int i = 0; i < height; i += patch_size) { | |
for (int j = 0; j < width; j += patch_size) { | |
clip_image_u8 *patch = clip_image_u8_init(); | |
patch->nx = std::min(patch_size, width - j); | |
patch->ny = std::min(patch_size, height - i); | |
patch->buf.resize(3 * patch->nx * patch->ny); | |
for (int y = 0; y < patch->ny; ++y) { | |
for (int x = 0; x < patch->nx; ++x) { | |
for (int c = 0; c < 3; ++c) { | |
patch->buf[3 * (y * patch->nx + x) + c] = image.buf[3 * ((i + y) * width + (j + x)) + c]; | |
} | |
} | |
} | |
patches.push_back(patch); | |
} | |
} | |
return patches; | |
} | |
static int ensure_divide(int length, int patch_size) { | |
return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size); | |
} | |
static std::pair<int, int> uhd_find_best_resize(std::pair<int, int> original_size, int scale_resolution, int patch_size, bool allow_upscale = false) { | |
int width = original_size.first; | |
int height = original_size.second; | |
if ((width * height > scale_resolution * scale_resolution) || allow_upscale) { | |
float r = static_cast<float>(width) / height; | |
height = static_cast<int>(scale_resolution / std::sqrt(r)); | |
width = static_cast<int>(height * r); | |
} | |
int best_width = ensure_divide(width, patch_size); | |
int best_height = ensure_divide(height, patch_size); | |
return std::make_pair(best_width, best_height); | |
} | |
static std::pair<int, int> uhd_get_refine_size(std::pair<int, int> original_size, std::pair<int, int> grid, int scale_resolution, int patch_size, bool allow_upscale = false) { | |
int width, height; | |
std::tie(width, height) = original_size; | |
int grid_x, grid_y; | |
std::tie(grid_x, grid_y) = grid; | |
int refine_width = ensure_divide(width, grid_x); | |
int refine_height = ensure_divide(height, grid_y); | |
int grid_width = refine_width / grid_x; | |
int grid_height = refine_height / grid_y; | |
// auto best_grid_size = find_best_resize(std::make_tuple(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); (old line) | |
auto best_grid_size = uhd_find_best_resize(std::make_pair(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); // (new line) => fixes conversion for make_tuple to make_pair | |
int best_grid_width, best_grid_height; | |
std::tie(best_grid_width, best_grid_height) = best_grid_size; | |
// std::pair<int, int> refine_size = std::make_tuple(best_grid_width * grid_x, best_grid_height * grid_y); (old line) | |
std::pair<int, int> refine_size = std::make_pair(best_grid_width * grid_x, best_grid_height * grid_y); // (new line) | |
return refine_size; | |
} | |
static std::pair<int, int> uhd_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) { | |
std::vector<int> candidate_split_grids_nums; | |
for (int i : {multiple - 1, multiple, multiple + 1}) { | |
if (i == 1 || i > max_slice_nums) { | |
continue; | |
} | |
candidate_split_grids_nums.push_back(i); | |
} | |
std::vector<std::pair<int, int>> candidate_grids; | |
for (int split_grids_nums : candidate_split_grids_nums) { | |
int m = 1; | |
while (m <= split_grids_nums) { | |
if (split_grids_nums % m == 0) { | |
candidate_grids.emplace_back(m, split_grids_nums / m); | |
} | |
++m; | |
} | |
} | |
std::pair<int, int> best_grid{1, 1}; | |
float min_error = std::numeric_limits<float>::infinity(); | |
for (const auto& grid : candidate_grids) { | |
float error = std::abs(log_ratio - std::log(1.0 * grid.first / grid.second)); | |
if (error < min_error) { | |
best_grid = grid; | |
min_error = error; | |
} | |
} | |
return best_grid; | |
} | |
// inspired from LLaVA-UHD: | |
// -> https://arxiv.org/pdf/2403.11703 | |
// -> https://github.com/thunlp/LLaVA-UHD | |
// -> https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118 | |
static std::vector<std::vector<clip_image_u8 *>> uhd_slice_image(const clip_image_u8 * img, const int max_slice_nums=9, const int scale_resolution=448, const int patch_size=14) { | |
const std::pair<int, int> original_size={img->nx,img->ny}; | |
const int original_width = img->nx; | |
const int original_height = img->ny; | |
const float log_ratio = log(1.0*original_width/original_height); | |
const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution); | |
const int multiple = fmin(ceil(ratio), max_slice_nums); | |
std::vector<std::vector<clip_image_u8 *>> images; | |
LOG_INF("%s: multiple %d\n", __func__, multiple); | |
images.push_back(std::vector<clip_image_u8 *>()); | |
if (multiple <= 1) { | |
auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size, true); | |
clip_image_u8 * source_image = clip_image_u8_init(); | |
bicubic_resize(*img, *source_image, best_size.first, best_size.second); | |
// source_image = image.resize(best_size, Image.Resampling.BICUBIC) | |
images[images.size()-1].push_back(source_image); | |
} | |
else if (multiple > 1) { | |
auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size); | |
clip_image_u8 * source_image = clip_image_u8_init(); | |
bicubic_resize(*img, *source_image, best_size.first, best_size.second); | |
// source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC) | |
LOG_INF("%s: image_size: %d %d; source_image size: %d %d\n", __func__, img->nx, img->ny, best_size.first, best_size.second); | |
images[images.size()-1].push_back(source_image); | |
std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio); | |
LOG_INF("%s: image_size: %d %d; best_grid: %d %d\n", __func__, img->nx, img->ny, best_grid.first, best_grid.second); | |
auto refine_size = uhd_get_refine_size(original_size, best_grid, scale_resolution, patch_size, true); | |
clip_image_u8 * refine_image = clip_image_u8_init(); | |
bicubic_resize(*img, *refine_image, refine_size.first, refine_size.second); | |
LOG_INF("%s: refine_image_size: %d %d; refine_size: %d %d\n", __func__, refine_image->nx, refine_image->ny, refine_size.first, refine_size.second); | |
// split_to_patches | |
int width = refine_image->nx; | |
int height = refine_image->ny; | |
int grid_x = int(width / best_grid.first); | |
int grid_y = int(height / best_grid.second); | |
for (int patches_i = 0, ic = 0; patches_i < height && ic < best_grid.second; patches_i += grid_y, ic += 1){ | |
images.push_back(std::vector<clip_image_u8 *>()); | |
for(int patches_j = 0, jc = 0; patches_j < width && jc < best_grid.first; patches_j += grid_x, jc += 1){ | |
clip_image_u8 * patch = clip_image_u8_init(); | |
patch->nx = grid_x; | |
patch->ny = grid_y; | |
patch->buf.resize(3 * patch->nx * patch->ny); | |
for (int y = patches_i; y < patches_i + grid_y; ++y) { | |
for (int x = patches_j; x < patches_j + grid_x; ++x) { | |
const int i = 3 * (y * refine_image->nx + x); | |
const int j = 3 * ((y-patches_i) * patch->nx + (x-patches_j)); | |
patch->buf[j] = refine_image->buf[i]; | |
patch->buf[j+1] = refine_image->buf[i+1]; | |
patch->buf[j+2] = refine_image->buf[i+2]; | |
} | |
} | |
images[images.size()-1].push_back(patch); | |
} | |
} | |
} | |
return images; | |
} | |
int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip) { | |
const int max_slice_nums=9; | |
const int scale_resolution=448; | |
const int original_width = ctx_clip->load_image_size->width; | |
const int original_height = ctx_clip->load_image_size->height; | |
const float log_ratio = log(1.0*original_width/original_height); | |
const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution); | |
const int multiple = fmin(ceil(ratio), max_slice_nums); | |
std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio); | |
return best_grid.first; | |
} | |
// returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector | |
// res_imgs memory is being allocated here, previous allocations will be freed if found | |
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch * res_imgs) { | |
if(clip_is_minicpmv(ctx)){ | |
int max_slice_nums = 9; | |
std::vector<std::vector<clip_image_u8 *>> imgs = uhd_slice_image(img, max_slice_nums); | |
res_imgs->size = 0; | |
for (size_t i = 0; i < imgs.size(); ++i){ | |
res_imgs->size += imgs[i].size(); | |
} | |
res_imgs->data = new clip_image_f32[res_imgs->size]; | |
int idx = 0; | |
for (size_t i = 0; i < imgs.size(); ++i) { | |
for (size_t j = 0; j < imgs[i].size(); ++j) { | |
LOG_DBG("%s: %d %d\n", __func__,imgs[i][j]->nx,imgs[i][j]->ny); | |
clip_image_f32 * res = clip_image_f32_init(); | |
normalize_image_u8_to_f32(imgs[i][j], res, ctx->image_mean, ctx->image_std); | |
res_imgs->data[idx++] = *res; | |
clip_image_f32_free(res); | |
} | |
} | |
return true; | |
} | |
bool pad_to_square = true; | |
if (!ctx->has_vision_encoder) { | |
LOG_ERR("This gguf file seems to have no vision encoder\n"); | |
return false; | |
} | |
auto & params = ctx->vision_model.hparams; | |
// The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing | |
if (strcmp(params.mm_patch_merge_type, "spatial_unpad") == 0) { | |
pad_to_square = false; | |
} | |
// free the previous res_imgs if any set | |
if (res_imgs->size > 0) { | |
clip_image_f32_batch_free(res_imgs); | |
} | |
res_imgs->data = nullptr; | |
res_imgs->size = 0; | |
// the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104) | |
// see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156 | |
clip_image_u8 * temp = clip_image_u8_init(); // we will keep the input image data here temporarily | |
if (pad_to_square && img->nx != img->ny) { | |
int longer_side = std::max(img->nx, img->ny); | |
temp->nx = longer_side; | |
temp->ny = longer_side; | |
temp->buf.resize(3 * longer_side * longer_side); | |
const uint8_t bc[3] = {122, 116, 104}; // background color in RGB from LLaVA (this is the mean rgb color * 255) | |
// fill with background color | |
for (size_t i = 0; i < temp->buf.size(); i++) { | |
temp->buf[i] = bc[i % 3]; | |
} | |
// copy from the input image | |
for (int y = 0; y < img->ny; y++) { | |
for (int x = 0; x < img->nx; x++) { | |
const int i = 3 * (y * img->nx + x); | |
const int j = 3 * (y * temp->nx + x); | |
temp->buf[j] = img->buf[i]; | |
temp->buf[j+1] = img->buf[i+1]; | |
temp->buf[j+2] = img->buf[i+2]; | |
} | |
} | |
} else { | |
if (params.image_grid_pinpoints[0] != 0) { | |
// "spatial_unpad" with "anyres" processing for llava-1.6 | |
std::vector<std::pair<int, int>> possible_resolutions; | |
for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) { | |
possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]}); | |
} | |
std::pair<int, int> best_resolution = select_best_resolution({img->nx, img->ny}, possible_resolutions); | |
// clip_image_save_to_bmp(*img, "input.bmp"); | |
resize_and_pad_image(*img, *temp, best_resolution); // we do not pad with mean-bg color anymore in llava-1.6 | |
// clip_image_save_to_bmp(*temp, "resized.bmp"); | |
// visually verify normalized image: | |
// normalize_image_u8_to_f32(*temp, *res, ctx->image_mean, ctx->image_std); | |
// { | |
// clip_image_u8 * temp2 = clip_image_u8_init(); | |
// clip_image_convert_f32_to_u8(*res, *temp2); | |
// clip_image_save_to_bmp(*temp2, "resized_normalized_f32.bmp"); | |
// clip_image_u8_free(temp2); | |
// } | |
std::vector<clip_image_u8 *> patches = divide_to_patches_u8(*temp, params.image_size); // prepare spatial sorted main patches of image_size each (336 in llava-1.6) | |
clip_image_u8 *image_original_resize = clip_image_u8_init(); | |
// bilinear_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square | |
bicubic_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square | |
patches.insert(patches.begin(), image_original_resize); | |
// clip_image_f32_batch_init(patches.size()); | |
res_imgs->size = patches.size(); | |
res_imgs->data = new clip_image_f32[res_imgs->size]; | |
int num=0; | |
for (auto& patch : patches) { | |
normalize_image_u8_to_f32(patch, &res_imgs->data[num], ctx->image_mean, ctx->image_std); | |
num++; | |
} | |
for (size_t i = 0; i < patches.size(); i++) { | |
// LOG_DBG("patch %d: %d %d\n", i, patches[i]->nx, patches[i]->ny); | |
clip_image_u8_free(patches[i]); | |
} | |
clip_image_u8_free(temp); | |
return true; | |
} else { | |
temp->nx = img->nx; | |
temp->ny = img->ny; | |
temp->buf.resize(img->buf.size()); | |
memcpy(temp->buf.data(), img->buf.data(), temp->buf.size()); | |
} | |
} | |
const int nx = temp->nx; | |
const int ny = temp->ny; | |
// clip_image_save_to_bmp(*temp, "resized_vanilla.bmp"); | |
const int nx2 = ctx->vision_model.hparams.image_size; | |
const int ny2 = ctx->vision_model.hparams.image_size; | |
clip_image_f32 * res = clip_image_f32_init(); | |
res->nx = nx2; | |
res->ny = ny2; | |
res->buf.resize(3 * nx2 * ny2); | |
const float scale = std::max(nx, ny) / (float)ctx->vision_model.hparams.image_size; | |
const int nx3 = int(nx / scale + 0.5f); | |
const int ny3 = int(ny / scale + 0.5f); | |
const auto & m3 = ctx->image_mean; // {0.48145466f, 0.4578275f, 0.40821073f}; | |
const auto & s3 = ctx->image_std; // {0.26862954f, 0.26130258f, 0.27577711f}; | |
for (int y = 0; y < ny3; y++) { | |
for (int x = 0; x < nx3; x++) { | |
for (int c = 0; c < 3; c++) { | |
// linear interpolation | |
const float sx = (x + 0.5f) * scale - 0.5f; | |
const float sy = (y + 0.5f) * scale - 0.5f; | |
const int x0 = std::max(0, (int)std::floor(sx)); | |
const int y0 = std::max(0, (int)std::floor(sy)); | |
const int x1 = std::min(x0 + 1, nx - 1); | |
const int y1 = std::min(y0 + 1, ny - 1); | |
const float dx = sx - x0; | |
const float dy = sy - y0; | |
const int j00 = 3 * (y0 * nx + x0) + c; | |
const int j01 = 3 * (y0 * nx + x1) + c; | |
const int j10 = 3 * (y1 * nx + x0) + c; | |
const int j11 = 3 * (y1 * nx + x1) + c; | |
const float v00 = temp->buf[j00]; | |
const float v01 = temp->buf[j01]; | |
const float v10 = temp->buf[j10]; | |
const float v11 = temp->buf[j11]; | |
const float v0 = v00 * (1.0f - dx) + v01 * dx; | |
const float v1 = v10 * (1.0f - dx) + v11 * dx; | |
const float v = v0 * (1.0f - dy) + v1 * dy; | |
const uint8_t v2 = std::min(std::max(std::round(v), 0.0f), 255.0f); | |
const int i = 3 * (y * nx3 + x) + c; | |
res->buf[i] = ((float(v2) / 255.0f) - m3[c]) / s3[c]; | |
} | |
} | |
} | |
clip_image_u8_free(temp); | |
// { | |
// clip_image_u8 * temp2 = clip_image_u8_init(); | |
// clip_image_convert_f32_to_u8(*res, *temp2); | |
// clip_image_save_to_bmp(*temp2, "resized_normalized_f32_vanilla.bmp"); | |
// clip_image_u8_free(temp2); | |
// } | |
// res_imgs.push_back(res); | |
res_imgs->size = 1; | |
res_imgs->data = new clip_image_f32[res_imgs->size]; | |
res_imgs->data[0] = *res; | |
clip_image_f32_free(res); | |
return true; | |
} | |
ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) { | |
return ctx->vision_model.image_newline; | |
} | |
void clip_free(clip_ctx * ctx) { | |
ggml_free(ctx->ctx_data); | |
gguf_free(ctx->ctx_gguf); | |
ggml_backend_buffer_free(ctx->params_buffer); | |
ggml_backend_free(ctx->backend); | |
ggml_gallocr_free(ctx->compute_alloc); | |
delete ctx; | |
} | |
size_t clip_embd_nbytes(const struct clip_ctx * ctx) { | |
return clip_n_patches(ctx) * clip_n_mmproj_embd(ctx) * sizeof(float); | |
} | |
int32_t clip_image_size(const struct clip_ctx * ctx) { | |
return ctx->vision_model.hparams.image_size; | |
} | |
int32_t clip_patch_size(const struct clip_ctx * ctx) { | |
return ctx->vision_model.hparams.patch_size; | |
} | |
int32_t clip_hidden_size(const struct clip_ctx * ctx) { | |
return ctx->vision_model.hparams.hidden_size; | |
} | |
const char * clip_patch_merge_type(const struct clip_ctx * ctx) { | |
return ctx->vision_model.hparams.mm_patch_merge_type; | |
} | |
const int32_t * clip_image_grid(const struct clip_ctx * ctx) { | |
return ctx->vision_model.hparams.image_grid_pinpoints; | |
} | |
int clip_n_patches(const struct clip_ctx * ctx) { | |
const auto & params = ctx->vision_model.hparams; | |
int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size); | |
if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2) { | |
n_patches /= 4; | |
} else if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) { | |
if (ctx->minicpmv_version == 2) { | |
n_patches = 96; | |
} | |
else if (ctx->minicpmv_version == 3) { | |
n_patches = 64; | |
} | |
} | |
return n_patches; | |
} | |
static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) { | |
assert(embed_dim % 2 == 0); | |
int H = pos.size(); | |
int W = pos[0].size(); | |
std::vector<float> omega(embed_dim / 2); | |
for (int i = 0; i < embed_dim / 2; ++i) { | |
omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2)); | |
} | |
std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim))); | |
for (int h = 0; h < H; ++h) { | |
for (int w = 0; w < W; ++w) { | |
for (int d = 0; d < embed_dim / 2; ++d) { | |
float out_value = pos[h][w] * omega[d]; | |
emb[h][w][d] = sin(out_value); | |
emb[h][w][d + embed_dim / 2] = cos(out_value); | |
} | |
} | |
} | |
return emb; | |
} | |
static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) { | |
assert(embed_dim % 2 == 0); | |
std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2) | |
std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2) | |
int H = emb_h.size(); | |
int W = emb_h[0].size(); | |
std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim))); | |
for (int h = 0; h < H; ++h) { | |
for (int w = 0; w < W; ++w) { | |
for (int d = 0; d < embed_dim / 2; ++d) { | |
emb[h][w][d] = emb_h[h][w][d]; | |
emb[h][w][d + embed_dim / 2] = emb_w[h][w][d]; | |
} | |
} | |
} | |
return emb; | |
} | |
static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) { | |
int grid_h_size = image_size.first; | |
int grid_w_size = image_size.second; | |
std::vector<float> grid_h(grid_h_size); | |
std::vector<float> grid_w(grid_w_size); | |
for (int i = 0; i < grid_h_size; ++i) { | |
grid_h[i] = static_cast<float>(i); | |
} | |
for (int i = 0; i < grid_w_size; ++i) { | |
grid_w[i] = static_cast<float>(i); | |
} | |
std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size)); | |
for (int h = 0; h < grid_h_size; ++h) { | |
for (int w = 0; w < grid_w_size; ++w) { | |
grid[h][w] = grid_w[w]; | |
} | |
} | |
std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid}; | |
for (int h = 0; h < grid_h_size; ++h) { | |
for (int w = 0; w < grid_w_size; ++w) { | |
grid_2d[0][h][w] = grid_h[h]; | |
grid_2d[1][h][w] = grid_w[w]; | |
} | |
} | |
std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d); | |
int H = image_size.first; | |
int W = image_size.second; | |
std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim)); | |
for (int h = 0; h < H; ++h) { | |
for (int w = 0; w < W; ++w) { | |
pos_embed_2d[w * H + h] = pos_embed_3d[h][w]; | |
} | |
} | |
return pos_embed_2d; | |
} | |
bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) { | |
if (!ctx->has_vision_encoder) { | |
LOG_ERR("This gguf file seems to have no vision encoder\n"); | |
return false; | |
} | |
clip_image_f32_batch imgs{}; | |
imgs.size = 1; | |
imgs.data = img; | |
return clip_image_batch_encode(ctx, n_threads, &imgs, vec); | |
} | |
bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec) { | |
if (!ctx->has_vision_encoder) { | |
LOG_ERR("This gguf file seems to have no vision encoder\n"); | |
return false; | |
} | |
int batch_size = imgs->size; | |
if (ctx->has_llava_projector) { | |
GGML_ASSERT(batch_size == 1); // TODO: support multiple images | |
} | |
if (ctx->has_minicpmv_projector) { | |
GGML_ASSERT(batch_size == 1); | |
} | |
// build the inference graph | |
ggml_cgraph * gf = clip_image_build_graph(ctx, imgs, ctx->load_image_size, true); | |
ggml_gallocr_alloc_graph(ctx->compute_alloc, gf); | |
// set inputs | |
const auto & model = ctx->vision_model; | |
const auto & hparams = model.hparams; | |
const int image_size = hparams.image_size; | |
int image_size_width = image_size; | |
int image_size_height = image_size; | |
if (ctx->has_minicpmv_projector) { | |
image_size_width = imgs->data[0].nx; | |
image_size_height = imgs->data[0].ny; | |
} | |
const int patch_size = hparams.patch_size; | |
const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size)); | |
const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0); | |
if(ctx->load_image_size==nullptr){ | |
ctx->load_image_size= clip_image_size_init(); | |
} | |
const int pos_w = ctx->load_image_size->width/patch_size; | |
const int pos_h = ctx->load_image_size->height/patch_size; | |
{ | |
struct ggml_tensor * inp_raw = ggml_graph_get_tensor(gf, "inp_raw"); | |
float * data = (float *)malloc(ggml_nbytes(inp_raw)); | |
for (size_t i = 0; i < imgs->size; i++) { | |
const int nx = imgs->data[i].nx; | |
const int ny = imgs->data[i].ny; | |
if (!ctx->has_minicpmv_projector) { | |
GGML_ASSERT(nx == image_size && ny == image_size); | |
} | |
const int n = nx * ny; | |
for (int b = 0; b < batch_size; b++) { | |
for (int k = 0; k < 3; k++) { | |
for (int y = 0; y < ny; y++) { | |
for (int x = 0; x < nx; x++) { | |
data[(b * 3 * n) + k * n + y * nx + x] = imgs->data[b].buf[3 * (y * nx + x) + k]; | |
} | |
} | |
} | |
} | |
} | |
ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw)); | |
free(data); | |
} | |
if (ctx->has_minicpmv_projector) { | |
{ | |
// inspired from siglip: | |
// -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit | |
// -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316 | |
struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions"); | |
int* positions_data = (int*)malloc(ggml_nbytes(positions)); | |
int bucket_coords_h[70]; | |
int bucket_coords_w[70]; | |
for (int i = 0; i < pos_h; i++){ | |
bucket_coords_h[i] = std::floor(70.0*i/pos_h); | |
} | |
for (int i = 0; i < pos_w; i++){ | |
bucket_coords_w[i] = std::floor(70.0*i/pos_w); | |
} | |
for (int i = 0, id = 0; i < pos_h; i++){ | |
for (int j = 0; j < pos_w; j++){ | |
positions_data[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j]; | |
} | |
} | |
ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions)); | |
free(positions_data); | |
} | |
{ | |
// inspired from resampler of Qwen-VL: | |
// -> https://huggingface.co/Qwen/Qwen-VL/tree/main | |
// -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23 | |
struct ggml_tensor * pos_embed = ggml_graph_get_tensor(gf, "pos_embed"); | |
int embed_dim = 4096; | |
if (ctx->minicpmv_version == 2) { | |
embed_dim = 4096; | |
} | |
else if (ctx->minicpmv_version == 3) { | |
embed_dim = 3584; | |
} | |
auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h)); | |
float * pos_embed_data = (float *)malloc(ggml_nbytes(pos_embed)); | |
for(int i=0;i<pos_w * pos_h;++i){ | |
for(int j=0;j<embed_dim;++j){ | |
pos_embed_data[i*embed_dim+j]=pos_embed_t[i][j]; | |
} | |
} | |
ggml_backend_tensor_set(pos_embed, pos_embed_data, 0, ggml_nbytes(pos_embed)); | |
free(pos_embed_data); | |
} | |
} | |
else{ | |
{ | |
if (ctx->has_class_embedding) { | |
struct ggml_tensor * embeddings = ggml_graph_get_tensor(gf, "embeddings"); | |
void* zero_mem = malloc(ggml_nbytes(embeddings)); | |
memset(zero_mem, 0, ggml_nbytes(embeddings)); | |
ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings)); | |
free(zero_mem); | |
} | |
} | |
{ | |
struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions"); | |
int* positions_data = (int*)malloc(ggml_nbytes(positions)); | |
for (int i = 0; i < num_positions; i++) { | |
positions_data[i] = i; | |
} | |
ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions)); | |
free(positions_data); | |
} | |
{ | |
struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches"); | |
int* patches_data = (int*)malloc(ggml_nbytes(patches)); | |
for (int i = 0; i < num_patches; i++) { | |
patches_data[i] = i + 1; | |
} | |
ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches)); | |
free(patches_data); | |
} | |
} | |
if (ggml_backend_is_cpu(ctx->backend)) { | |
ggml_backend_cpu_set_n_threads(ctx->backend, n_threads); | |
} | |
ggml_backend_graph_compute(ctx->backend, gf); | |
// the last node is the embedding tensor | |
struct ggml_tensor * embeddings = ggml_graph_node(gf, -1); | |
// copy the embeddings to the location passed by the user | |
ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings)); | |
return true; | |
} | |
bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype) { | |
ggml_type type = GGML_TYPE_Q4_1; | |
assert(itype < GGML_TYPE_COUNT); | |
type = static_cast<ggml_type>(itype); | |
auto * ctx_clip = clip_model_load(fname_inp, 2); | |
const auto & ctx_src = ctx_clip->ctx_gguf; | |
const auto & ctx_data = ctx_clip->ctx_data; | |
auto * ctx_out = gguf_init_empty(); | |
gguf_set_kv(ctx_out, ctx_src); | |
gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION); | |
gguf_set_val_u32(ctx_out, "general.file_type", itype); | |
auto fout = std::ofstream(fname_out, std::ios::binary); | |
const int n_tensors = gguf_get_n_tensors(ctx_src); | |
for (int i = 0; i < n_tensors; ++i) { | |
const char * name = gguf_get_tensor_name(ctx_src, i); | |
struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name); | |
gguf_add_tensor(ctx_out, cur); | |
} | |
const size_t meta_size = gguf_get_meta_size(ctx_out); | |
for (size_t i = 0; i < meta_size; ++i) { | |
fout.put(0); | |
} | |
// regexes of tensor names to be quantized | |
const std::vector<std::string> k_names = { | |
".*weight", | |
}; | |
std::vector<uint8_t> work(512); | |
std::vector<float> conv_buf(512); | |
size_t total_size_org = 0; | |
size_t total_size_new = 0; | |
for (int i = 0; i < n_tensors; ++i) { | |
const std::string name = gguf_get_tensor_name(ctx_src, i); | |
struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str()); | |
enum ggml_type new_type; | |
void * new_data; | |
size_t new_size; | |
bool quantize = false; | |
for (const auto & s : k_names) { | |
if (std::regex_match(name, std::regex(s))) { | |
quantize = true; | |
break; | |
} | |
} | |
// quantize only 2D tensors | |
quantize &= (ggml_n_dims(cur) == 2); | |
if (quantize) { | |
new_type = type; | |
if (new_type >= GGML_TYPE_Q2_K && name.find("embd") != std::string::npos) { | |
new_type = GGML_TYPE_Q8_0; // ggml_get_rows needs non K type | |
// LOG_ERR("%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type)); | |
} | |
const size_t n_elms = ggml_nelements(cur); | |
float * f32_data; | |
switch (cur->type) { | |
case GGML_TYPE_F32: | |
f32_data = (float *)cur->data; | |
break; | |
case GGML_TYPE_F16: | |
if (conv_buf.size() < n_elms) { | |
conv_buf.resize(n_elms); | |
} | |
for (size_t j = 0; j < n_elms; ++j) { | |
conv_buf[j] = ggml_fp16_to_fp32(((ggml_fp16_t *)cur->data)[j]); | |
} | |
f32_data = (float *)conv_buf.data(); | |
break; | |
default: | |
LOG_ERR("Please use an input file in f32 or f16\n"); | |
gguf_free(ctx_out); | |
return false; | |
} | |
if (work.size() < n_elms * 4) { | |
work.resize(n_elms * 4); | |
} | |
new_data = work.data(); | |
new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, n_elms/cur->ne[0], cur->ne[0], nullptr); | |
} else { | |
new_type = cur->type; | |
new_data = cur->data; | |
new_size = ggml_nbytes(cur); | |
} | |
const size_t orig_size = ggml_nbytes(cur); | |
total_size_org += orig_size; | |
total_size_new += new_size; | |
gguf_set_tensor_type(ctx_out, name.c_str(), new_type); | |
gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size); | |
fout.write((const char *)new_data, new_size); | |
size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size; | |
for (size_t j = 0; j < pad; ++j) { | |
fout.put(0); | |
} | |
LOG_INF("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize, | |
orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0); | |
} | |
// go back to beginning of file and write the updated metadata | |
fout.seekp(0, std::ios::beg); | |
std::vector<uint8_t> meta(meta_size); | |
gguf_get_meta_data(ctx_out, meta.data()); | |
fout.write((const char *)meta.data(), meta_size); | |
fout.close(); | |
clip_free(ctx_clip); | |
gguf_free(ctx_out); | |
{ | |
LOG_INF("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0); | |
LOG_INF("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0); | |
} | |
return true; | |
} | |
int clip_n_mmproj_embd(const struct clip_ctx * ctx) { | |
if (ctx->proj_type == PROJECTOR_TYPE_LDP) { | |
return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0]; | |
} | |
if (ctx->proj_type == PROJECTOR_TYPE_LDPV2) { | |
return ctx->vision_model.mm_model_peg_0_b->ne[0]; | |
} | |
if (ctx->proj_type == PROJECTOR_TYPE_MLP) { | |
return ctx->vision_model.mm_2_b->ne[0]; | |
} | |
if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) { | |
return ctx->vision_model.mm_3_b->ne[0]; | |
} | |
if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) { | |
if (ctx->minicpmv_version == 2) { | |
return 4096; | |
} | |
else if (ctx->minicpmv_version == 3) { | |
return 3584; | |
} | |
} | |
std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type]; | |
throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str())); | |
} | |
int clip_is_minicpmv(const struct clip_ctx * ctx) { | |
if (ctx->has_minicpmv_projector) { | |
return ctx->minicpmv_version; | |
} | |
return 0; | |
} | |