Spaces:
Runtime error
Runtime error
static void print_usage(int, char ** argv) { | |
printf("\nexample usage:\n"); | |
printf("\n %s -m model.gguf [-c context_size] [-ngl n_gpu_layers]\n", argv[0]); | |
printf("\n"); | |
} | |
int main(int argc, char ** argv) { | |
std::string model_path; | |
int ngl = 99; | |
int n_ctx = 2048; | |
// parse command line arguments | |
for (int i = 1; i < argc; i++) { | |
try { | |
if (strcmp(argv[i], "-m") == 0) { | |
if (i + 1 < argc) { | |
model_path = argv[++i]; | |
} else { | |
print_usage(argc, argv); | |
return 1; | |
} | |
} else if (strcmp(argv[i], "-c") == 0) { | |
if (i + 1 < argc) { | |
n_ctx = std::stoi(argv[++i]); | |
} else { | |
print_usage(argc, argv); | |
return 1; | |
} | |
} else if (strcmp(argv[i], "-ngl") == 0) { | |
if (i + 1 < argc) { | |
ngl = std::stoi(argv[++i]); | |
} else { | |
print_usage(argc, argv); | |
return 1; | |
} | |
} else { | |
print_usage(argc, argv); | |
return 1; | |
} | |
} catch (std::exception & e) { | |
fprintf(stderr, "error: %s\n", e.what()); | |
print_usage(argc, argv); | |
return 1; | |
} | |
} | |
if (model_path.empty()) { | |
print_usage(argc, argv); | |
return 1; | |
} | |
// only print errors | |
llama_log_set([](enum ggml_log_level level, const char * text, void * /* user_data */) { | |
if (level >= GGML_LOG_LEVEL_ERROR) { | |
fprintf(stderr, "%s", text); | |
} | |
}, nullptr); | |
// initialize the model | |
llama_model_params model_params = llama_model_default_params(); | |
model_params.n_gpu_layers = ngl; | |
llama_model * model = llama_load_model_from_file(model_path.c_str(), model_params); | |
if (!model) { | |
fprintf(stderr , "%s: error: unable to load model\n" , __func__); | |
return 1; | |
} | |
// initialize the context | |
llama_context_params ctx_params = llama_context_default_params(); | |
ctx_params.n_ctx = n_ctx; | |
ctx_params.n_batch = n_ctx; | |
llama_context * ctx = llama_new_context_with_model(model, ctx_params); | |
if (!ctx) { | |
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__); | |
return 1; | |
} | |
// initialize the sampler | |
llama_sampler * smpl = llama_sampler_chain_init(llama_sampler_chain_default_params()); | |
llama_sampler_chain_add(smpl, llama_sampler_init_min_p(0.05f, 1)); | |
llama_sampler_chain_add(smpl, llama_sampler_init_temp(0.8f)); | |
llama_sampler_chain_add(smpl, llama_sampler_init_dist(LLAMA_DEFAULT_SEED)); | |
// helper function to evaluate a prompt and generate a response | |
auto generate = [&](const std::string & prompt) { | |
std::string response; | |
// tokenize the prompt | |
const int n_prompt_tokens = -llama_tokenize(model, prompt.c_str(), prompt.size(), NULL, 0, true, true); | |
std::vector<llama_token> prompt_tokens(n_prompt_tokens); | |
if (llama_tokenize(model, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), llama_get_kv_cache_used_cells(ctx) == 0, true) < 0) { | |
GGML_ABORT("failed to tokenize the prompt\n"); | |
} | |
// prepare a batch for the prompt | |
llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size()); | |
llama_token new_token_id; | |
while (true) { | |
// check if we have enough space in the context to evaluate this batch | |
int n_ctx = llama_n_ctx(ctx); | |
int n_ctx_used = llama_get_kv_cache_used_cells(ctx); | |
if (n_ctx_used + batch.n_tokens > n_ctx) { | |
printf("\033[0m\n"); | |
fprintf(stderr, "context size exceeded\n"); | |
exit(0); | |
} | |
if (llama_decode(ctx, batch)) { | |
GGML_ABORT("failed to decode\n"); | |
} | |
// sample the next token | |
new_token_id = llama_sampler_sample(smpl, ctx, -1); | |
// is it an end of generation? | |
if (llama_token_is_eog(model, new_token_id)) { | |
break; | |
} | |
// convert the token to a string, print it and add it to the response | |
char buf[256]; | |
int n = llama_token_to_piece(model, new_token_id, buf, sizeof(buf), 0, true); | |
if (n < 0) { | |
GGML_ABORT("failed to convert token to piece\n"); | |
} | |
std::string piece(buf, n); | |
printf("%s", piece.c_str()); | |
fflush(stdout); | |
response += piece; | |
// prepare the next batch with the sampled token | |
batch = llama_batch_get_one(&new_token_id, 1); | |
} | |
return response; | |
}; | |
std::vector<llama_chat_message> messages; | |
std::vector<char> formatted(llama_n_ctx(ctx)); | |
int prev_len = 0; | |
while (true) { | |
// get user input | |
printf("\033[32m> \033[0m"); | |
std::string user; | |
std::getline(std::cin, user); | |
if (user.empty()) { | |
break; | |
} | |
// add the user input to the message list and format it | |
messages.push_back({"user", strdup(user.c_str())}); | |
int new_len = llama_chat_apply_template(model, nullptr, messages.data(), messages.size(), true, formatted.data(), formatted.size()); | |
if (new_len > (int)formatted.size()) { | |
formatted.resize(new_len); | |
new_len = llama_chat_apply_template(model, nullptr, messages.data(), messages.size(), true, formatted.data(), formatted.size()); | |
} | |
if (new_len < 0) { | |
fprintf(stderr, "failed to apply the chat template\n"); | |
return 1; | |
} | |
// remove previous messages to obtain the prompt to generate the response | |
std::string prompt(formatted.begin() + prev_len, formatted.begin() + new_len); | |
// generate a response | |
printf("\033[33m"); | |
std::string response = generate(prompt); | |
printf("\n\033[0m"); | |
// add the response to the messages | |
messages.push_back({"assistant", strdup(response.c_str())}); | |
prev_len = llama_chat_apply_template(model, nullptr, messages.data(), messages.size(), false, nullptr, 0); | |
if (prev_len < 0) { | |
fprintf(stderr, "failed to apply the chat template\n"); | |
return 1; | |
} | |
} | |
// free resources | |
for (auto & msg : messages) { | |
free(const_cast<char *>(msg.content)); | |
} | |
llama_sampler_free(smpl); | |
llama_free(ctx); | |
llama_free_model(model); | |
return 0; | |
} | |