Spaces:
Runtime error
Runtime error
// optimize me. Use template to avoid copy code. | |
using namespace AscendC; | |
class GET_ROW_F32 { | |
public: | |
__aicore__ inline GET_ROW_F32() {} | |
__aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output, | |
int64_t *input_ne_ub, size_t *input_nb_ub, | |
int64_t *indices_ne_ub, size_t *indices_nb_ub, | |
int64_t *output_ne_ub, size_t *output_nb_ub) { | |
int64_t op_block_num = GetBlockNum(); | |
int64_t op_block_idx = GetBlockIdx(); | |
for (int i = 0; i < 4; i++) { | |
input_ne[i] = input_ne_ub[i]; | |
input_stride[i] = input_nb_ub[i] / input_nb_ub[0]; | |
indices_ne[i] = indices_ne_ub[i]; | |
indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0]; | |
output_ne[i] = output_ne_ub[i]; | |
output_stride[i] = output_nb_ub[i] / output_nb_ub[0]; | |
} | |
// Indices has two dims. n_elements = all rows should get. | |
// dr, all rows should this thread get. | |
uint64_t n_elements = | |
indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3]; | |
dr = n_elements / op_block_num; | |
uint64_t tails = n_elements % op_block_num; | |
if (op_block_idx < tails) { | |
dr += 1; | |
ir = dr * op_block_idx; | |
} else { | |
ir = dr * op_block_idx + tails; | |
} | |
input_gm.SetGlobalBuffer((__gm__ float *)input); | |
indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices); | |
output_gm.SetGlobalBuffer((__gm__ float *)output); | |
uint64_t local_buffer_size = ((input_ne[0] * sizeof(float) + 31) & ~31); | |
local_buffer_elems = local_buffer_size / sizeof(float); | |
// TODO, consider long row that can't put in UB. | |
// All data should asign to 32. It's ok because all data is align to 32. | |
pipe.InitBuffer(input_queue, BUFFER_NUM, local_buffer_size); | |
pipe.InitBuffer(output_queue, BUFFER_NUM, local_buffer_size); | |
} | |
__aicore__ inline void copy_in(uint32_t offset, size_t len) { | |
LocalTensor<float> input_local = input_queue.AllocTensor<float>(); | |
size_t tail = len % 32; | |
len = len & ~31; | |
DataCopy(input_local, input_gm[offset], len); | |
if(tail != 0) { | |
DataCopyExtParams dataCopyParams; | |
dataCopyParams.blockCount = 1; | |
dataCopyParams.blockLen = tail * sizeof(float); | |
DataCopyPadExtParams<float> padParams; | |
DataCopyPad(input_local[len], input_gm[offset + len], | |
dataCopyParams, padParams); | |
} | |
input_queue.EnQue(input_local); | |
} | |
__aicore__ inline void copy_out(uint32_t offset, size_t len) { | |
LocalTensor<float> output_local = output_queue.DeQue<float>(); | |
size_t tail = len % 32; | |
len = len & ~31; | |
DataCopy(output_gm[offset], output_local, len); | |
if(tail != 0) { | |
DataCopyExtParams dataCopyParams; | |
dataCopyParams.blockCount = 1; | |
dataCopyParams.blockLen = tail * sizeof(float); | |
DataCopyPad(output_gm[offset + len], output_local[len], | |
dataCopyParams); | |
} | |
output_queue.FreeTensor(output_local); | |
} | |
__aicore__ inline void calculate_row(int64_t idx) { | |
const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]); | |
const int64_t indices_ne1_idx = | |
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) / | |
indices_ne[0]; | |
const int64_t indices_ne0_idx = | |
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] - | |
indices_ne1_idx * indices_ne[0]); | |
const int64_t indices_offset = indices_ne0_idx * indices_stride[0] + | |
indices_ne1_idx * indices_stride[1] + | |
indices_ne2_idx * indices_stride[2]; | |
const int32_t selected_row_idx = indices_gm.GetValue(indices_offset); | |
const int64_t input_offset = selected_row_idx * input_stride[1] + | |
indices_ne1_idx * input_stride[2] + | |
indices_ne2_idx * input_stride[3]; | |
const int64_t output_offset = indices_ne0_idx * output_stride[1] + | |
indices_ne1_idx * output_stride[2] + | |
indices_ne2_idx * output_stride[3]; | |
copy_in(input_offset, input_ne[0]); | |
LocalTensor<float> input_local = input_queue.DeQue<float>(); | |
LocalTensor<float> output_local = output_queue.AllocTensor<float>(); | |
DataCopy(output_local, input_local, local_buffer_elems); | |
output_queue.EnQue(output_local); | |
copy_out(output_offset, input_ne[0]); | |
input_queue.FreeTensor(input_local); | |
} | |
__aicore__ inline void calculate() { | |
for (int64_t i = ir; i < ir + dr; i++) { | |
calculate_row(i); | |
} | |
} | |
private: | |
int64_t input_ne[4]; | |
size_t input_stride[4]; | |
int64_t indices_ne[4]; | |
size_t indices_stride[4]; | |
int64_t output_ne[4]; | |
size_t output_stride[4]; | |
size_t local_buffer_elems; | |
int64_t ir; | |
int64_t dr; | |
TPipe pipe; | |
GlobalTensor<float> input_gm; | |
GlobalTensor<int32_t> indices_gm; | |
GlobalTensor<float> output_gm; | |
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue; | |
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue; | |
}; | |
template <typename T> | |
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) { | |
auto gm_ptr = (__gm__ uint8_t *)gm; | |
auto ub_ptr = (uint8_t *)(ub); | |
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) { | |
*ub_ptr = *gm_ptr; | |
} | |
} | |
extern "C" __global__ __aicore__ void ascendc_get_row_f32( | |
GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm, | |
GM_ADDR input_ne_gm, GM_ADDR input_nb_gm, GM_ADDR indices_ne_gm, | |
GM_ADDR indices_nb_gm, GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) { | |
int64_t input_ne_ub[4]; | |
size_t input_nb_ub[4]; | |
int64_t indices_ne_ub[4]; | |
size_t indices_nb_ub[4]; | |
int64_t output_ne_ub[4]; | |
size_t output_nb_ub[4]; | |
copy_to_ub(input_ne_gm, input_ne_ub, 32); | |
copy_to_ub(input_nb_gm, input_nb_ub, 32); | |
copy_to_ub(indices_ne_gm, indices_ne_ub, 32); | |
copy_to_ub(indices_nb_gm, indices_nb_ub, 32); | |
copy_to_ub(output_ne_gm, output_ne_ub, 32); | |
copy_to_ub(output_nb_gm, output_nb_ub, 32); | |
GET_ROW_F32 op; | |
op.init(input_gm, indices_gm, output_gm, input_ne_ub, input_nb_ub, | |
indices_ne_ub, indices_nb_ub, output_ne_ub, output_nb_ub); | |
op.calculate(); | |
} | |