Spaces:
Runtime error
Runtime error
typedef void (* fattn_kernel_t)( | |
const char * __restrict__ Q, | |
const char * __restrict__ K, | |
const char * __restrict__ V, | |
const char * __restrict__ mask, | |
float * __restrict__ dst, | |
float2 * __restrict__ dst_meta, | |
const float scale, | |
const float max_bias, | |
const float m0, | |
const float m1, | |
const uint32_t n_head_log2, | |
const float logit_softcap, | |
const int ne00, | |
const int ne01, | |
const int ne02, | |
const int ne03, | |
const int ne10, | |
const int ne11, | |
const int ne12, | |
const int ne13, | |
const int ne31, | |
const int nb31, | |
const int nb01, | |
const int nb02, | |
const int nb03, | |
const int nb11, | |
const int nb12, | |
const int nb13, | |
const int nb21, | |
const int nb22, | |
const int nb23, | |
const int ne0, | |
const int ne1, | |
const int ne2, | |
const int ne3); | |
typedef half (*vec_dot_KQ_f16_t)( | |
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds); | |
typedef float (*vec_dot_KQ_f32_t)( | |
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds); | |
template<typename T, int D> | |
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_0( | |
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) { | |
const block_q4_0 * K_q4_0 = (const block_q4_0 *) K_c; | |
GGML_UNUSED(Q_v); | |
T sum = 0.0f; | |
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) { | |
const int k_KQ = k_KQ_0 + threadIdx.x; | |
const int ib = k_KQ / QI8_1; | |
const int iqs4 = k_KQ % QI4_0; | |
const int shift = k_KQ & (QI8_1/2); | |
const int v = (get_int_b2(K_q4_0[ib].qs, iqs4) >> shift) & 0x0F0F0F0F; | |
const int u = Q_q8[k_KQ_0/WARP_SIZE]; | |
const int sumi = ggml_cuda_dp4a(v, u, 0); | |
if (std::is_same<T, half>::value) { | |
const half2 * Q_ds = (const half2 *) Q_ds_v; | |
const half2 sum2 = __half2half2(K_q4_0[ib].d) * Q_ds[k_KQ_0/WARP_SIZE]; | |
sum += (T) (((half) sumi)*__low2half(sum2) - __high2half(sum2) /* *8/QI8_1 == 1 */); | |
} else | |
{ | |
const float2 * Q_ds = (const float2 *) Q_ds_v; | |
sum += (T) (__half2float(K_q4_0[ib].d) * (sumi*Q_ds[k_KQ_0/WARP_SIZE].x - (8/QI8_1)*Q_ds[k_KQ_0/WARP_SIZE].y)); | |
} | |
} | |
return sum; | |
} | |
template<typename T, int D> | |
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_1( | |
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) { | |
const block_q4_1 * K_q4_1 = (const block_q4_1 *) K_c; | |
GGML_UNUSED(Q_v); | |
T sum = 0.0f; | |
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) { | |
const int k_KQ = k_KQ_0 + threadIdx.x; | |
const int ib = k_KQ / QI8_1; | |
const int iqs4 = k_KQ % QI4_1; | |
const int shift = k_KQ & (QI8_1/2); | |
const int v = (get_int_b4(K_q4_1[ib].qs, iqs4) >> shift) & 0x0F0F0F0F; | |
const int u = Q_q8[k_KQ_0/WARP_SIZE]; | |
const int sumi = ggml_cuda_dp4a(v, u, 0); | |
if (std::is_same<T, half>::value) { | |
const half2 * Q_ds = (const half2 *) Q_ds_v; | |
const half2 d4d8_m4s8 = K_q4_1[ib].dm * Q_ds[k_KQ_0/WARP_SIZE]; | |
const half2 sumid4d8_m4s8scaled = d4d8_m4s8 * make_half2(sumi, 1.0f/QI8_1); | |
sum += (T) (__low2half(sumid4d8_m4s8scaled) + __high2half(sumid4d8_m4s8scaled)); | |
} else | |
{ | |
const float2 * Q_ds = (const float2 *) Q_ds_v; | |
const float sumid4d8 = __low2float(K_q4_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].x * sumi; | |
const float m4s8scaled = __high2float(K_q4_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].y / QI8_1; | |
sum += (T) (sumid4d8 + m4s8scaled); | |
} | |
} | |
return sum; | |
} | |
template<typename T, int D> | |
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_0( | |
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) { | |
const block_q5_0 * K_q5_0 = (const block_q5_0 *) K_c; | |
GGML_UNUSED(Q_v); | |
T sum = 0.0f; | |
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) { | |
const int k_KQ = k_KQ_0 + threadIdx.x; | |
const int ib = k_KQ / QI8_1; | |
const int iqs4 = k_KQ % QI5_0; | |
const int iqs8 = k_KQ % QI8_1; | |
const int shift = k_KQ & (QI8_1/2); | |
int v = (get_int_b2(K_q5_0[ib].qs, iqs4) >> shift) & 0x0F0F0F0F; | |
const int vh = get_int_b2(K_q5_0[ib].qh, 0) >> (iqs8 * QI5_0); | |
v |= (vh << 4) & 0x00000010; // 0 -> 4 | |
v |= (vh << 11) & 0x00001000; // 1 -> 12 | |
v |= (vh << 18) & 0x00100000; // 2 -> 20 | |
v |= (vh << 25) & 0x10000000; // 3 -> 28 | |
const int u = Q_q8[k_KQ_0/WARP_SIZE]; | |
const int sumi = ggml_cuda_dp4a(v, u, 0); | |
if (std::is_same<T, half>::value) { | |
const half2 * Q_ds = (const half2 *) Q_ds_v; | |
const half2 sum2 = __half2half2(K_q5_0[ib].d) * Q_ds[k_KQ_0/WARP_SIZE]; | |
sum += (T) (((half) sumi)*__low2half(sum2) - __high2half(sum2)*__float2half(2.0f)) /* *16/QI8_1 == 2 */; | |
} else | |
{ | |
const float2 * Q_ds = (const float2 *) Q_ds_v; | |
sum += (T) (__half2float(K_q5_0[ib].d) * (sumi*Q_ds[k_KQ_0/WARP_SIZE].x - (16/QI8_1)*Q_ds[k_KQ_0/WARP_SIZE].y)); | |
} | |
} | |
return sum; | |
} | |
template<typename T, int D> | |
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_1( | |
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) { | |
const block_q5_1 * K_q5_1 = (const block_q5_1 *) K_c; | |
GGML_UNUSED(Q_v); | |
T sum = 0.0f; | |
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) { | |
const int k_KQ = k_KQ_0 + threadIdx.x; | |
const int ib = k_KQ / QI8_1; | |
const int iqs4 = k_KQ % QI5_1; | |
const int iqs8 = k_KQ % QI8_1; | |
const int shift = k_KQ & (QI8_1/2); | |
int v = (get_int_b2(K_q5_1[ib].qs, iqs4) >> shift) & 0x0F0F0F0F; | |
const int vh = get_int_b2(K_q5_1[ib].qh, 0) >> (iqs8 * QI5_1); | |
v |= (vh << 4) & 0x00000010; // 0 -> 4 | |
v |= (vh << 11) & 0x00001000; // 1 -> 12 | |
v |= (vh << 18) & 0x00100000; // 2 -> 20 | |
v |= (vh << 25) & 0x10000000; // 3 -> 28 | |
const int u = Q_q8[k_KQ_0/WARP_SIZE]; | |
const int sumi = ggml_cuda_dp4a(v, u, 0); | |
if (std::is_same<T, half>::value) { | |
const half2 * Q_ds = (const half2 *) Q_ds_v; | |
const half2 d5d8_m5s8 = K_q5_1[ib].dm * Q_ds[k_KQ_0/WARP_SIZE]; | |
const half2 sumid5d8_m5s8scaled = d5d8_m5s8 * make_half2(sumi, 1.0f/QI8_1); | |
sum += (T) (__low2half(sumid5d8_m5s8scaled) + __high2half(sumid5d8_m5s8scaled)); | |
} else | |
{ | |
const float2 * Q_ds = (const float2 *) Q_ds_v; | |
const float sumid5d8 = __low2float(K_q5_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].x * sumi; | |
const float m5s8scaled = __high2float(K_q5_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].y / QI8_1; | |
sum += (T) (sumid5d8 + m5s8scaled); | |
} | |
} | |
return sum; | |
} | |
template <typename T, int D> | |
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q8_0( | |
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) { | |
const block_q8_0 * K_q8_0 = (const block_q8_0 *) K_c; | |
GGML_UNUSED(Q_v); | |
T sum = 0.0f; | |
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) { | |
const int k_KQ = k_KQ_0 + threadIdx.x; | |
const int ib = k_KQ / QI8_0; | |
const int iqs = k_KQ % QI8_0; | |
const int v = get_int_b2(K_q8_0[ib].qs, iqs); | |
T Q_d; | |
if (std::is_same<T, half>::value) { | |
const half2 * Q_ds = (const half2 *) Q_ds_v; | |
Q_d = __low2half(Q_ds[k_KQ_0/WARP_SIZE]); | |
} else { | |
const float2 * Q_ds = (const float2 *) Q_ds_v; | |
Q_d = Q_ds[k_KQ_0/WARP_SIZE].x; | |
} | |
sum += vec_dot_q8_0_q8_1_impl<T, 1>(&v, &Q_q8[k_KQ_0/WARP_SIZE], K_q8_0[ib].d, Q_d); | |
} | |
return sum; | |
} | |
template <typename T, int D> | |
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_f16( | |
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds_v) { | |
const half2 * K_h2 = (const half2 *) K_c; | |
GGML_UNUSED(Q_q8); | |
GGML_UNUSED(Q_ds_v); | |
if (std::is_same<T, half>::value) { | |
const half2 * Q_h2 = (const half2 *) Q_v; | |
half2 sum2 = make_half2(0.0f, 0.0f); | |
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) { | |
const int k_KQ = k_KQ_0 + threadIdx.x; | |
const half2 K_ik = K_h2[k_KQ]; | |
sum2 += K_ik * Q_h2[k_KQ_0/WARP_SIZE]; | |
} | |
return __low2half(sum2) + __high2half(sum2); | |
} | |
const float2 * Q_f2 = (const float2 *) Q_v; | |
float sum = 0.0f; | |
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) { | |
const int k_KQ = k_KQ_0 + threadIdx.x; | |
const half2 K_ik = K_h2[k_KQ]; | |
sum += __low2float(K_ik) * Q_f2[k_KQ_0/WARP_SIZE].x; | |
sum += __high2float(K_ik) * Q_f2[k_KQ_0/WARP_SIZE].y; | |
} | |
return sum; | |
} | |
template <typename Tds> | |
static __device__ __forceinline__ void quantize_q8_1_to_shared( | |
const float * __restrict__ x, const float scale, int * __restrict__ yq32, void * __restrict__ yds) { | |
float vals[sizeof(int)] = {0.0f}; | |
for (int l = 0; l < sizeof(int); ++l) { | |
vals[l] = scale * x[4*threadIdx.x + l]; | |
} | |
float amax = fabsf(vals[0]); | |
float sum = vals[0]; | |
for (int l = 1; l < sizeof(int); ++l) { | |
amax = fmaxf(amax, fabsf(vals[l])); | |
sum += vals[l]; | |
} | |
for (int mask = QI8_1/2; mask > 0; mask >>= 1) { | |
amax = fmaxf(amax, __shfl_xor_sync(0xFFFFFFFF, amax, mask, 32)); | |
sum += __shfl_xor_sync(0xFFFFFFFF, sum, mask, 32); | |
} | |
const float d = amax / 127; | |
int q32 = 0; | |
int8_t * q8 = (int8_t *) &q32; | |
if (d != 0.0f) { | |
for (int l = 0; l < sizeof(int); ++l) { | |
q8[l] = roundf(vals[l] / d); | |
} | |
} | |
yq32[threadIdx.x] = q32; | |
if (threadIdx.x % QI8_1 == 0) { | |
if (std::is_same<Tds, half2>::value) { | |
((half2 *) yds)[threadIdx.x/QI8_1] = make_half2(d, sum); | |
} else { | |
((float2 *) yds)[threadIdx.x/QI8_1] = make_float2(d, sum); | |
} | |
} | |
} | |
typedef half (*dequantize_1_f16_t)(const void *, const int64_t); | |
typedef float (*dequantize_1_f32_t)(const void *, const int64_t); | |
template <typename T> | |
static __device__ __forceinline__ T dequantize_1_q4_0(const void * __restrict__ vx, const int64_t i) { | |
const block_q4_0 * x = (const block_q4_0 *) vx; | |
const int64_t ib = i / QK4_0; | |
const int iqs = i % (QK4_0/2); | |
const int shift = (i % QK4_0) / (QK4_0/2); | |
const T d = x[ib].d; | |
const int q0 = x[ib].qs[iqs]; | |
const int q = ((q0 >> (4*shift)) & 0x0F) - 8; | |
if (std::is_same<T, half>::value) { | |
return ((half) d)*((half) q); | |
} | |
return ((float) d)*((float) q); | |
} | |
template <typename T> | |
static __device__ __forceinline__ T dequantize_1_q4_1(const void * __restrict__ vx, const int64_t i) { | |
const block_q4_1 * x = (const block_q4_1 *) vx; | |
const int64_t ib = i / QK4_1; | |
const int iqs = i % (QK4_1/2); | |
const int shift = (i % QK4_1) / (QK4_1/2); | |
const half2 dm = x[ib].dm; | |
const int q0 = x[ib].qs[iqs]; | |
const int q = ((q0 >> (4*shift)) & 0x0F); | |
if (std::is_same<T, half>::value) { | |
return __low2half(dm)*((half) q) + __high2half(dm); | |
} | |
return __low2float(dm)*((float) q) + __high2float(dm); | |
} | |
template <typename T> | |
static __device__ __forceinline__ T dequantize_1_q5_0(const void * __restrict__ vx, const int64_t i) { | |
const block_q5_0 * x = (const block_q5_0 *) vx; | |
const int64_t ib = i / QK5_0; | |
const int idq = i % QK5_0; | |
const int iqs = i % (QK5_0/2); | |
const int shift = (i % QK5_0) / (QK5_0/2); | |
const T d = x[ib].d; | |
const int ql0 = x[ib].qs[iqs]; | |
const int qh0 = get_int_b2(x[ib].qh, 0); | |
const int ql = ((ql0 >> (4*shift)) & 0x0F); | |
const int qh = ((qh0 >> idq) << 4) & 0x10; | |
const int q = (ql | qh) - 16; | |
if (std::is_same<T, half>::value) { | |
return ((half) d)*((half) q); | |
} | |
return ((float) d)*((float) q); | |
} | |
template <typename T> | |
static __device__ __forceinline__ T dequantize_1_q5_1(const void * __restrict__ vx, const int64_t i) { | |
const block_q5_1 * x = (const block_q5_1 *) vx; | |
const int64_t ib = i / QK5_1; | |
const int idq = i % QK5_1; | |
const int iqs = i % (QK5_1/2); | |
const int shift = (i % QK5_1) / (QK5_1/2); | |
const half2 dm = x[ib].dm; | |
const int ql0 = x[ib].qs[iqs]; | |
const int qh0 = get_int_b4(x[ib].qh, 0); | |
const int ql = ((ql0 >> (4*shift)) & 0x0F); | |
const int qh = ((qh0 >> idq) << 4) & 0x10; | |
const int q = (ql | qh); | |
if (std::is_same<T, half>::value) { | |
return __low2half(dm)*((half) q) + __high2half(dm); | |
} | |
return __low2float(dm)*((float) q) + __high2float(dm); | |
} | |
template <typename T> | |
static __device__ __forceinline__ T dequantize_1_q8_0(const void * __restrict__ vx, const int64_t i) { | |
const block_q8_0 * x = (const block_q8_0 *) vx; | |
const int64_t ib = i / QK8_0; | |
const int iqs = i % QK8_0; | |
const T d = x[ib].d; | |
const int q = x[ib].qs[iqs]; | |
if (std::is_same<T, half>::value) { | |
return ((half) d)*((half) q); | |
} | |
return ((float) d)*((float) q); | |
} | |
template <typename T> | |
static __device__ __forceinline__ T dequantize_1_f16(const void * __restrict__ vx, const int64_t i) { | |
const half * x = (const half *) vx; | |
return x[i]; | |
} | |
template <int D> | |
constexpr __device__ vec_dot_KQ_f16_t get_vec_dot_KQ_f16(ggml_type type_K) { | |
return type_K == GGML_TYPE_Q4_0 ? vec_dot_fattn_vec_KQ_q4_0<half, D> : | |
type_K == GGML_TYPE_Q4_1 ? vec_dot_fattn_vec_KQ_q4_1<half, D> : | |
type_K == GGML_TYPE_Q5_0 ? vec_dot_fattn_vec_KQ_q5_0<half, D> : | |
type_K == GGML_TYPE_Q5_1 ? vec_dot_fattn_vec_KQ_q5_1<half, D> : | |
type_K == GGML_TYPE_Q8_0 ? vec_dot_fattn_vec_KQ_q8_0<half, D> : | |
type_K == GGML_TYPE_F16 ? vec_dot_fattn_vec_KQ_f16<half, D> : | |
nullptr; | |
} | |
template <int D> | |
constexpr __device__ vec_dot_KQ_f32_t get_vec_dot_KQ_f32(ggml_type type_K) { | |
return type_K == GGML_TYPE_Q4_0 ? vec_dot_fattn_vec_KQ_q4_0<float, D> : | |
type_K == GGML_TYPE_Q4_1 ? vec_dot_fattn_vec_KQ_q4_1<float, D> : | |
type_K == GGML_TYPE_Q5_0 ? vec_dot_fattn_vec_KQ_q5_0<float, D> : | |
type_K == GGML_TYPE_Q5_1 ? vec_dot_fattn_vec_KQ_q5_1<float, D> : | |
type_K == GGML_TYPE_Q8_0 ? vec_dot_fattn_vec_KQ_q8_0<float, D> : | |
type_K == GGML_TYPE_F16 ? vec_dot_fattn_vec_KQ_f16<float, D> : | |
nullptr; | |
} | |
constexpr __device__ dequantize_1_f16_t get_dequantize_1_f16(ggml_type type_V) { | |
return type_V == GGML_TYPE_Q4_0 ? dequantize_1_q4_0<half> : | |
type_V == GGML_TYPE_Q4_1 ? dequantize_1_q4_1<half> : | |
type_V == GGML_TYPE_Q5_0 ? dequantize_1_q5_0<half> : | |
type_V == GGML_TYPE_Q5_1 ? dequantize_1_q5_1<half> : | |
type_V == GGML_TYPE_Q8_0 ? dequantize_1_q8_0<half> : | |
type_V == GGML_TYPE_F16 ? dequantize_1_f16<half> : | |
nullptr; | |
} | |
constexpr __device__ dequantize_1_f32_t get_dequantize_1_f32(ggml_type type_V) { | |
return type_V == GGML_TYPE_Q4_0 ? dequantize_1_q4_0<float> : | |
type_V == GGML_TYPE_Q4_1 ? dequantize_1_q4_1<float> : | |
type_V == GGML_TYPE_Q5_0 ? dequantize_1_q5_0<float> : | |
type_V == GGML_TYPE_Q5_1 ? dequantize_1_q5_1<float> : | |
type_V == GGML_TYPE_Q8_0 ? dequantize_1_q8_0<float> : | |
type_V == GGML_TYPE_F16 ? dequantize_1_f16<float> : | |
nullptr; | |
} | |
template<int D, int parallel_blocks> // D == head size | |
__launch_bounds__(D, 1) | |
static __global__ void flash_attn_combine_results( | |
const float * __restrict__ VKQ_parts, | |
const float2 * __restrict__ VKQ_meta, | |
float * __restrict__ dst) { | |
VKQ_parts += parallel_blocks*D * gridDim.y*blockIdx.x; | |
VKQ_meta += parallel_blocks * gridDim.y*blockIdx.x; | |
dst += D * gridDim.y*blockIdx.x; | |
const int tid = threadIdx.x; | |
__builtin_assume(tid < D); | |
__shared__ float2 meta[parallel_blocks]; | |
if (tid < 2*parallel_blocks) { | |
((float *) meta)[threadIdx.x] = ((const float *)VKQ_meta) [blockIdx.y*(2*parallel_blocks) + tid]; | |
} | |
__syncthreads(); | |
float kqmax = meta[0].x; | |
for (int l = 1; l < parallel_blocks; ++l) { | |
kqmax = max(kqmax, meta[l].x); | |
} | |
float VKQ_numerator = 0.0f; | |
float VKQ_denominator = 0.0f; | |
for (int l = 0; l < parallel_blocks; ++l) { | |
const float diff = meta[l].x - kqmax; | |
const float KQ_max_scale = expf(diff); | |
const uint32_t ftz_mask = 0xFFFFFFFF * (diff > SOFTMAX_FTZ_THRESHOLD); | |
*((uint32_t *) &KQ_max_scale) &= ftz_mask; | |
VKQ_numerator += KQ_max_scale * VKQ_parts[l*gridDim.y*D + blockIdx.y*D + tid]; | |
VKQ_denominator += KQ_max_scale * meta[l].y; | |
} | |
dst[blockIdx.y*D + tid] = VKQ_numerator / VKQ_denominator; | |
} | |
static void on_no_fattn_vec_case(const int D) { | |
if (D == 64) { | |
fprintf(stderr, "Unsupported KV type combination for head_size 64.\n"); | |
fprintf(stderr, "By default only f16 KV cache is supported.\n"); | |
fprintf(stderr, "Compile with GGML_CUDA_FA_ALL_QUANTS for V cache quantization support.\n"); | |
GGML_ABORT("fatal error"); | |
} else if (D == 128) { | |
fprintf(stderr, "Unsupported KV type combination for head_size 128.\n"); | |
fprintf(stderr, "Supported combinations:\n"); | |
fprintf(stderr, " - K == q4_0, V == q4_0, 4.50 BPV\n"); | |
fprintf(stderr, " - K == q8_0, V == q8_0, 8.50 BPV\n"); | |
fprintf(stderr, " - K == f16, V == f16, 16.00 BPV\n"); | |
fprintf(stderr, "Compile with GGML_CUDA_FA_ALL_QUANTS for all combinations of q4_0, q4_1, q5_0, q5_1, q8_0, and f16.\n"); | |
GGML_ABORT("fatal error"); | |
} else { | |
fprintf(stderr, "Unsupported KV type combination for head_size 256.\n"); | |
fprintf(stderr, "Only f16 is supported.\n"); | |
GGML_ABORT("fatal error"); | |
} | |
} | |
template <int D, int parallel_blocks> | |
void launch_fattn( | |
ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kernel_t fattn_kernel, | |
const int nwarps, const int cols_per_block, const bool need_f16_K, const bool need_f16_V | |
) { | |
const ggml_tensor * Q = dst->src[0]; | |
const ggml_tensor * K = dst->src[1]; | |
const ggml_tensor * V = dst->src[2]; | |
const ggml_tensor * mask = dst->src[3]; | |
ggml_tensor * KQV = dst; | |
GGML_ASSERT(Q->type == GGML_TYPE_F32); | |
GGML_ASSERT(KQV->type == GGML_TYPE_F32); | |
GGML_ASSERT(!mask || mask->type == GGML_TYPE_F16); | |
GGML_ASSERT(!mask || mask->ne[1] >= GGML_PAD(Q->ne[1], 16) && | |
"the Flash-Attention CUDA kernel requires the mask to be padded to 16 and at least n_queries big"); | |
GGML_ASSERT(K->ne[1] % FATTN_KQ_STRIDE == 0 && "Incorrect KV cache padding."); | |
ggml_cuda_pool & pool = ctx.pool(); | |
cudaStream_t main_stream = ctx.stream(); | |
ggml_cuda_pool_alloc<half> K_f16(pool); | |
ggml_cuda_pool_alloc<half> V_f16(pool); | |
ggml_cuda_pool_alloc<float> dst_tmp(pool); | |
ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool); | |
char * K_data = (char *) K->data; | |
size_t nb11 = K->nb[1]; | |
size_t nb12 = K->nb[2]; | |
size_t nb13 = K->nb[3]; | |
char * V_data = (char *) V->data; | |
size_t nb21 = V->nb[1]; | |
size_t nb22 = V->nb[2]; | |
size_t nb23 = V->nb[3]; | |
if (need_f16_K && K->type != GGML_TYPE_F16) { | |
K_f16.alloc(ggml_nelements(K)); | |
to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(K->type); | |
to_fp16(K_data, K_f16.ptr, ggml_nelements(K), main_stream); | |
K_data = (char *) K_f16.ptr; | |
const size_t bs = ggml_blck_size(K->type); | |
const size_t ts = ggml_type_size(K->type); | |
nb11 = nb11*bs*sizeof(half)/ts; | |
nb12 = nb12*bs*sizeof(half)/ts; | |
nb13 = nb13*bs*sizeof(half)/ts; | |
} | |
if (need_f16_V && V->type != GGML_TYPE_F16) { | |
V_f16.alloc(ggml_nelements(V)); | |
to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(V->type); | |
to_fp16(V_data, V_f16.ptr, ggml_nelements(V), main_stream); | |
V_data = (char *) V_f16.ptr; | |
const size_t bs = ggml_blck_size(V->type); | |
const size_t ts = ggml_type_size(V->type); | |
nb21 = nb21*bs*sizeof(half)/ts; | |
nb22 = nb22*bs*sizeof(half)/ts; | |
nb23 = nb23*bs*sizeof(half)/ts; | |
} | |
if (parallel_blocks > 1) { | |
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV)); | |
dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV)); | |
} | |
const dim3 block_dim(WARP_SIZE, nwarps, 1); | |
const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]); | |
const int shmem = 0; | |
float scale = 1.0f; | |
float max_bias = 0.0f; | |
float logit_softcap = 0.0f; | |
memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float)); | |
memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float)); | |
memcpy(&logit_softcap, (float *) KQV->op_params + 2, sizeof(float)); | |
if (logit_softcap != 0.0f) { | |
scale /= logit_softcap; | |
} | |
const uint32_t n_head = Q->ne[2]; | |
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head)); | |
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); | |
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); | |
fattn_kernel<<<blocks_num, block_dim, shmem, main_stream>>>( | |
(const char *) Q->data, | |
K_data, | |
V_data, | |
mask ? ((const char *) mask->data) : nullptr, | |
(parallel_blocks) == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr, | |
scale, max_bias, m0, m1, n_head_log2, logit_softcap, | |
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3], | |
K->ne[0], K->ne[1], K->ne[2], K->ne[3], | |
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0, | |
Q->nb[1], Q->nb[2], Q->nb[3], | |
nb11, nb12, nb13, | |
nb21, nb22, nb23, | |
KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3] | |
); | |
CUDA_CHECK(cudaGetLastError()); | |
if ((parallel_blocks) == 1) { | |
return; | |
} | |
const dim3 block_dim_combine(D, 1, 1); | |
const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z); | |
const int shmem_combine = 0; | |
flash_attn_combine_results<D, parallel_blocks> | |
<<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>> | |
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data); | |
CUDA_CHECK(cudaGetLastError()); | |
} | |