Spaces:
Runtime error
Runtime error
typedef void (*load_tiles_mmq_t)(const char * __restrict__ x, int * x_tile, const int & kbx0, const int & i_max, const int & stride); | |
typedef void (*vec_dot_mmq_t)(const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00); | |
typedef void (*mmq_write_back_t)(const float * __restrict__ sum, float * __restrict__ dst, const int & stride, const int & i_max, const int & j_max); | |
enum mmq_q8_1_ds_layout { | |
MMQ_Q8_1_DS_LAYOUT_D4, | |
MMQ_Q8_1_DS_LAYOUT_DS4, | |
MMQ_Q8_1_DS_LAYOUT_D2S6, | |
}; | |
struct block_q8_1_mmq { | |
// The y float data is converted to a data layout that can simply be copied to shared memory as a contiguous block. | |
// The y float data is first grouped as blocks of 128 values. | |
// These blocks are then treated as individual data values and transposed. | |
// | |
// To avoid shared memory bank conflicts each block is padded with 16 bytes. | |
// This padding is also used to store block scales/partial sums. | |
// The scales multiplied with the quantized data are equal to the unquantized values. | |
// The partial sums are obtained by summing up a subgroup of the contained values (prior to quantization) | |
// and are only needed for performance reasons. | |
// | |
// The exact data stored depends on the x data type. | |
union { | |
float d4[4]; // 1 32 bit scale per 32 values, stored as d0,d1,d2,d3 | |
half2 ds4[4]; // 1 16 bit scale + 1 16 bit partial sum per 32 values, stored as d0,s0,d1,s1,d2,s2,d3,s3 | |
half d2s6[8]; // 1 16 bit scale per 64 values + 1 16 bit partial sum per 16 values for the first 96 values, | |
// stored as d0,d1,s1,s2,s3,s4,s5 | |
}; | |
int8_t qs[4*QK8_1]; // 128 values quantized to 8 bit each | |
}; | |
static_assert(sizeof(block_q8_1_mmq) == 4*QK8_1 + 4*sizeof(half2), "Unexpected block_q8_1_mmq size"); | |
static_assert(sizeof(block_q8_1_mmq) == 4*sizeof(block_q8_1), "Unexpected block_q8_1_mmq size"); | |
static mmq_q8_1_ds_layout mmq_get_q8_1_ds_layout(const ggml_type type_x) { | |
switch (type_x) { | |
case GGML_TYPE_Q4_0: | |
case GGML_TYPE_Q4_1: | |
return MMQ_Q8_1_DS_LAYOUT_DS4; | |
case GGML_TYPE_Q5_0: | |
return MMQ_Q8_1_DS_LAYOUT_D4; | |
case GGML_TYPE_Q5_1: | |
return MMQ_Q8_1_DS_LAYOUT_DS4; | |
case GGML_TYPE_Q8_0: | |
return MMQ_Q8_1_DS_LAYOUT_D4; | |
case GGML_TYPE_Q2_K: | |
return MMQ_Q8_1_DS_LAYOUT_D2S6; | |
case GGML_TYPE_Q3_K: | |
return MMQ_Q8_1_DS_LAYOUT_D4; | |
case GGML_TYPE_Q4_K: | |
case GGML_TYPE_Q5_K: | |
return MMQ_Q8_1_DS_LAYOUT_DS4; | |
case GGML_TYPE_Q6_K: | |
case GGML_TYPE_IQ2_XXS: | |
case GGML_TYPE_IQ2_XS: | |
case GGML_TYPE_IQ2_S: | |
case GGML_TYPE_IQ3_XXS: | |
case GGML_TYPE_IQ3_S: | |
return MMQ_Q8_1_DS_LAYOUT_D4; | |
case GGML_TYPE_IQ1_S: | |
return MMQ_Q8_1_DS_LAYOUT_DS4; | |
case GGML_TYPE_IQ4_XS: | |
case GGML_TYPE_IQ4_NL: | |
return MMQ_Q8_1_DS_LAYOUT_D4; | |
default: | |
GGML_ABORT("fatal error"); | |
break; | |
} | |
} | |
struct tile_x_sizes { | |
int qs; | |
int dm; | |
int sc; | |
}; | |
static constexpr int get_mmq_x_max_host(const int cc) { | |
return int8_mma_available(cc) ? 128 : | |
cc >= CC_VOLTA && cc < CC_OFFSET_AMD ? 128 : 64; | |
cc >= CC_VOLTA && cc < CC_OFFSET_AMD ? MMQ_DP4A_MAX_BATCH_SIZE : 64; | |
} | |
static constexpr __device__ int get_mmq_x_max_device() { | |
return 128; | |
return 128; | |
return MMQ_DP4A_MAX_BATCH_SIZE; | |
return 128; | |
return 64; | |
} | |
static constexpr int get_mmq_y_host(const int cc) { | |
return cc >= CC_OFFSET_AMD ? (cc == CC_RDNA1 ? 64 : 128) : (cc >= CC_VOLTA ? 128 : 64); | |
} | |
static constexpr __device__ int get_mmq_y_device() { | |
return 64; | |
return 128; | |
return 128; | |
return 64; | |
} | |
static constexpr __host__ __device__ tile_x_sizes mmq_get_dp4a_tile_x_sizes(ggml_type type, int mmq_y) { | |
return type == GGML_TYPE_Q4_0 ? MMQ_DP4A_TXS_Q4_0 : | |
type == GGML_TYPE_Q4_1 ? MMQ_DP4A_TXS_Q4_1 : | |
type == GGML_TYPE_Q5_0 ? MMQ_DP4A_TXS_Q8_0 : | |
type == GGML_TYPE_Q5_1 ? MMQ_DP4A_TXS_Q8_1 : | |
type == GGML_TYPE_Q8_0 ? MMQ_DP4A_TXS_Q8_0 : | |
type == GGML_TYPE_Q2_K ? MMQ_DP4A_TXS_Q2_K : | |
type == GGML_TYPE_Q3_K ? MMQ_DP4A_TXS_Q3_K : | |
type == GGML_TYPE_Q4_K ? MMQ_DP4A_TXS_Q4_K : | |
type == GGML_TYPE_Q5_K ? MMQ_DP4A_TXS_Q5_K : | |
type == GGML_TYPE_Q6_K ? MMQ_DP4A_TXS_Q6_K : | |
type == GGML_TYPE_IQ2_XXS ? MMQ_DP4A_TXS_Q8_0 : | |
type == GGML_TYPE_IQ2_XS ? MMQ_DP4A_TXS_Q8_0_16 : | |
type == GGML_TYPE_IQ2_S ? MMQ_DP4A_TXS_Q8_0_16 : | |
type == GGML_TYPE_IQ3_XXS ? MMQ_DP4A_TXS_Q8_0 : | |
type == GGML_TYPE_IQ3_S ? MMQ_DP4A_TXS_Q8_0 : | |
type == GGML_TYPE_IQ1_S ? MMQ_DP4A_TXS_Q8_0 : | |
type == GGML_TYPE_IQ4_XS ? MMQ_DP4A_TXS_Q8_0 : | |
type == GGML_TYPE_IQ4_NL ? MMQ_DP4A_TXS_Q8_0 : | |
tile_x_sizes{0, 0, 0}; | |
} | |
static_assert(MMQ_MMA_TILE_X_K_Q8_0 % 8 == 4, "Wrong padding."); | |
static_assert(MMQ_MMA_TILE_X_K_Q8_1 % 8 == 4, "Wrong padding."); | |
static_assert(MMQ_MMA_TILE_X_K_Q2_K % 8 == 4, "Wrong padding."); | |
static_assert(MMQ_MMA_TILE_X_K_Q3_K % 8 == 4, "Wrong padding."); | |
static_assert(MMQ_MMA_TILE_X_K_Q6_K % 8 == 4, "Wrong padding."); | |
static constexpr __host__ __device__ int mmq_get_mma_tile_x_k(ggml_type type) { | |
return type == GGML_TYPE_Q4_0 ? MMQ_MMA_TILE_X_K_Q8_0 : | |
type == GGML_TYPE_Q4_1 ? MMQ_MMA_TILE_X_K_Q8_1 : | |
type == GGML_TYPE_Q5_0 ? MMQ_MMA_TILE_X_K_Q8_0 : | |
type == GGML_TYPE_Q5_1 ? MMQ_MMA_TILE_X_K_Q8_1 : | |
type == GGML_TYPE_Q8_0 ? MMQ_MMA_TILE_X_K_Q8_0 : | |
type == GGML_TYPE_Q2_K ? MMQ_MMA_TILE_X_K_Q2_K : | |
type == GGML_TYPE_Q3_K ? MMQ_MMA_TILE_X_K_Q3_K : | |
type == GGML_TYPE_Q4_K ? MMQ_MMA_TILE_X_K_Q8_1 : | |
type == GGML_TYPE_Q5_K ? MMQ_MMA_TILE_X_K_Q8_1 : | |
type == GGML_TYPE_Q6_K ? MMQ_MMA_TILE_X_K_Q6_K : | |
type == GGML_TYPE_IQ2_XXS ? MMQ_MMA_TILE_X_K_Q8_0 : | |
type == GGML_TYPE_IQ2_XS ? MMQ_MMA_TILE_X_K_Q3_K : | |
type == GGML_TYPE_IQ2_S ? MMQ_MMA_TILE_X_K_Q3_K : | |
type == GGML_TYPE_IQ3_XXS ? MMQ_MMA_TILE_X_K_Q8_0 : | |
type == GGML_TYPE_IQ3_S ? MMQ_MMA_TILE_X_K_Q8_0 : | |
type == GGML_TYPE_IQ1_S ? MMQ_MMA_TILE_X_K_Q8_0 : | |
type == GGML_TYPE_IQ4_XS ? MMQ_MMA_TILE_X_K_Q8_0 : | |
type == GGML_TYPE_IQ4_NL ? MMQ_MMA_TILE_X_K_Q8_0 : | |
0; | |
} | |
static int mmq_get_granularity_host(const int mmq_x, const int cc) { | |
return int8_mma_available(cc) && mmq_x >= 48 ? 16 : 8; | |
} | |
static constexpr __device__ int mmq_get_granularity_device(const int mmq_x) { | |
return mmq_x >= 48 ? 16 : 8; | |
} | |
static constexpr __device__ int mmq_get_granularity_device(const int /* mmq_x */) { | |
return 8; | |
} | |
// ------------------------------------------------------------ | |
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_0( | |
const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { | |
int * x_qs = (int *) x_tile; | |
float * x_df = (float *) (x_qs + 2*WARP_SIZE); | |
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q4_0, mmq_y); | |
int * x_qs = (int *) x_tile; | |
float * x_df = (float *) (x_qs + txs.qs); | |
const int kbx = threadIdx.x / QI4_0; | |
const int kqsx = threadIdx.x % QI4_0; | |
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { | |
int i = i0 + threadIdx.y; | |
if (need_check) { | |
i = min(i, i_max); | |
} | |
const block_q4_0 * bxi = (const block_q4_0 *) x + kbx0 + i*stride + kbx; | |
const int qs0 = get_int_b2(bxi->qs, kqsx); | |
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + kbx*(2*QI4_0) + kqsx + 0] = __vsubss4((qs0 >> 0) & 0x0F0F0F0F, 0x08080808); | |
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + kbx*(2*QI4_0) + kqsx + QI4_0] = __vsubss4((qs0 >> 4) & 0x0F0F0F0F, 0x08080808); | |
x_qs[i*(WARP_SIZE + 1) + threadIdx.x] = qs0; | |
} | |
const int blocks_per_tile_x_row = WARP_SIZE / QI4_0; | |
const int kbxd = threadIdx.x % blocks_per_tile_x_row; | |
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_0) { | |
int i = i0 + threadIdx.y * QI4_0 + threadIdx.x / blocks_per_tile_x_row; | |
if (need_check) { | |
i = min(i, i_max); | |
} | |
const block_q4_0 * bxi = (const block_q4_0 *) x + kbx0 + i*stride + kbxd; | |
x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + kbxd] = bxi->d; | |
x_df[i*(WARP_SIZE/QI4_0) + i/QI4_0 + kbxd] = bxi->d; | |
} | |
} | |
template <int mmq_x, int mmq_y, int nwarps> | |
static __device__ __forceinline__ void vec_dot_q4_0_q8_1_dp4a( | |
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) { | |
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q4_0, mmq_y); | |
const int * x_qs = (const int *) x; | |
const float * x_df = (const float *) x_qs + txs.qs; | |
const int * y_qs = (const int *) y + 4; | |
const half2 * y_ds = (const half2 *) y; | |
// #pragma unroll | |
for (int k01 = 0; k01 < WARP_SIZE; k01 += QR4_0*VDR_Q4_0_Q8_1_MMQ) { | |
const int k0 = k00 + k01; | |
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { | |
const int j = j0 + threadIdx.y; | |
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { | |
const int i = i0 + threadIdx.x; | |
const int kyqs = QI8_1 * ((k01/2) / (QI8_1/2)) + (k01/2) % (QI8_1/2); | |
int u[2*VDR_Q4_0_Q8_1_MMQ]; | |
for (int l = 0; l < VDR_Q4_0_Q8_1_MMQ; ++l) { | |
u[2*l+0] = y_qs[j*MMQ_TILE_Y_K + kyqs + l]; | |
u[2*l+1] = y_qs[j*MMQ_TILE_Y_K + kyqs + (l + QI4_0)]; | |
} | |
sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMQ> | |
(&x_qs[i*(WARP_SIZE + 1) + k0/QR4_0], u, | |
x_df[i*(WARP_SIZE/QI4_0) + i/QI4_0 + k0/(QR4_0*QI4_0)], y_ds[j*MMQ_TILE_Y_K + k01/QI8_1]); | |
} | |
} | |
} | |
} | |
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_1( | |
const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { | |
int * x_qs = (int *) x_tile; | |
half2 * x_dm = (half2 *) (x_qs + 2*WARP_SIZE); | |
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q4_1, mmq_y); | |
int * x_qs = (int *) x_tile; | |
half2 * x_dm = (half2 *) (x_qs + txs.qs); | |
const int kbx = threadIdx.x / QI4_1; | |
const int kqsx = threadIdx.x % QI4_1; | |
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { | |
int i = i0 + threadIdx.y; | |
if (need_check) { | |
i = min(i, i_max); | |
} | |
const block_q4_1 * bxi = (const block_q4_1 *) x + kbx0 + i*stride + kbx; | |
const int qs0 = get_int_b4(bxi->qs, kqsx); | |
x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + kbx*(2*QI4_1) + kqsx + 0] = (qs0 >> 0) & 0x0F0F0F0F; | |
x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + kbx*(2*QI4_1) + kqsx + QI4_1] = (qs0 >> 4) & 0x0F0F0F0F; | |
x_qs[i*(WARP_SIZE + 1) + threadIdx.x] = qs0; | |
} | |
const int blocks_per_tile_x_row = WARP_SIZE / QI4_1; | |
const int kbxd = threadIdx.x % blocks_per_tile_x_row; | |
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_1) { | |
int i = i0 + threadIdx.y * QI4_1 + threadIdx.x / blocks_per_tile_x_row; | |
if (need_check) { | |
i = min(i, i_max); | |
} | |
const block_q4_1 * bxi = (const block_q4_1 *) x + kbx0 + i*stride + kbxd; | |
x_dm[i*MMQ_MMA_TILE_X_K_Q8_1 + kbxd] = bxi->dm; | |
x_dm[i*(WARP_SIZE/QI4_1) + i/QI4_1 + kbxd] = bxi->dm; | |
} | |
} | |
template <int mmq_x, int mmq_y, int nwarps> | |
static __device__ __forceinline__ void vec_dot_q4_1_q8_1_dp4a( | |
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) { | |
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q4_1, mmq_y); | |
const int * x_qs = (const int *) x; | |
const half2 * x_dm = (const half2 *) x_qs + txs.qs; | |
const int * y_qs = (const int *) y + 4; | |
const half2 * y_ds = (const half2 *) y; | |
// #pragma unroll | |
for (int k01 = 0; k01 < WARP_SIZE; k01 += QR4_1*VDR_Q4_1_Q8_1_MMQ) { | |
const int k0 = k00 + k01; | |
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { | |
const int j = j0 + threadIdx.y; | |
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { | |
const int i = i0 + threadIdx.x; | |
const int kyqs = QI8_1 * ((k01/2) / (QI8_1/2)) + (k01/2) % (QI8_1/2); | |
int u[2*VDR_Q4_1_Q8_1_MMQ]; | |
for (int l = 0; l < VDR_Q4_1_Q8_1_MMQ; ++l) { | |
u[2*l+0] = y_qs[j*MMQ_TILE_Y_K + kyqs + l]; | |
u[2*l+1] = y_qs[j*MMQ_TILE_Y_K + kyqs + (l + QI4_1)]; | |
} | |
sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMQ> | |
(&x_qs[i*(WARP_SIZE + 1) + k0/QR4_1], u, | |
x_dm[i*(WARP_SIZE/QI4_1) + i/QI4_1 + k0/(QR4_1*QI4_1)], y_ds[j*MMQ_TILE_Y_K + k01/QI8_1]); | |
} | |
} | |
} | |
} | |
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_0( | |
const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { | |
int * x_qs = (int *) x_tile; | |
float * x_df = (float *) (x_qs + WARP_SIZE*2); | |
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q5_0, mmq_y); | |
int * x_qs = (int *) x_tile; | |
float * x_df = (float *) (x_qs + txs.qs); | |
const int kbx = threadIdx.x / QI5_0; | |
const int kqsx = threadIdx.x % QI5_0; | |
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { | |
int i = i0 + threadIdx.y; | |
if (need_check) { | |
i = min(i, i_max); | |
} | |
const block_q5_0 * bxi = (const block_q5_0 *) x + kbx0 + i*stride + kbx; | |
const int ql = get_int_b2(bxi->qs, kqsx); | |
const int qh = get_int_b2(bxi->qh, 0) >> (4 * (threadIdx.x % QI5_0)); | |
int qs0 = (ql >> 0) & 0x0F0F0F0F; | |
qs0 |= (qh << 4) & 0x00000010; // 0 -> 4 | |
qs0 |= (qh << 11) & 0x00001000; // 1 -> 12 | |
qs0 |= (qh << 18) & 0x00100000; // 2 -> 20 | |
qs0 |= (qh << 25) & 0x10000000; // 3 -> 28 | |
qs0 = __vsubss4(qs0, 0x10101010); // subtract 16 | |
int qs1 = (ql >> 4) & 0x0F0F0F0F; | |
qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4 | |
qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12 | |
qs1 |= (qh << 2) & 0x00100000; // 18 -> 20 | |
qs1 |= (qh << 9) & 0x10000000; // 19 -> 28 | |
qs1 = __vsubss4(qs1, 0x10101010); // subtract 16 | |
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + kbx*(2*QI5_0) + kqsx + 0] = qs0; | |
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + kbx*(2*QI5_0) + kqsx + QI5_0] = qs1; | |
x_qs[i*(2*WARP_SIZE + 1) + kbx*(2*QI5_0) + kqsx + 0] = qs0; | |
x_qs[i*(2*WARP_SIZE + 1) + kbx*(2*QI5_0) + kqsx + QI5_0] = qs1; | |
} | |
const int blocks_per_tile_x_row = WARP_SIZE / QI5_0; | |
const int kbxd = threadIdx.x % blocks_per_tile_x_row; | |
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_0) { | |
int i = i0 + threadIdx.y * QI5_0 + threadIdx.x / blocks_per_tile_x_row; | |
if (need_check) { | |
i = min(i, i_max); | |
} | |
const block_q5_0 * bxi = (const block_q5_0 *) x + kbx0 + i*stride + kbxd; | |
x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + kbxd] = bxi->d; | |
x_df[i*(WARP_SIZE/QI5_0) + i/QI5_0 + kbxd] = bxi->d; | |
} | |
} | |
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_1( | |
const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { | |
int * x_qs = (int *) x_tile; | |
half2 * x_dm = (half2 *) (x_qs + 2*WARP_SIZE); | |
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q5_1, mmq_y); | |
int * x_qs = (int *) x_tile; | |
half2 * x_dm = (half2 *) (x_qs + txs.qs); | |
const int kbx = threadIdx.x / QI5_1; | |
const int kqsx = threadIdx.x % QI5_1; | |
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { | |
int i = i0 + threadIdx.y; | |
if (need_check) { | |
i = min(i, i_max); | |
} | |
const block_q5_1 * bxi = (const block_q5_1 *) x + kbx0 + i*stride + kbx; | |
const int ql = get_int_b4(bxi->qs, kqsx); | |
const int qh = get_int_b4(bxi->qh, 0) >> (4 * (threadIdx.x % QI5_1)); | |
int qs0 = (ql >> 0) & 0x0F0F0F0F; | |
qs0 |= (qh << 4) & 0x00000010; // 0 -> 4 | |
qs0 |= (qh << 11) & 0x00001000; // 1 -> 12 | |
qs0 |= (qh << 18) & 0x00100000; // 2 -> 20 | |
qs0 |= (qh << 25) & 0x10000000; // 3 -> 28 | |
int qs1 = (ql >> 4) & 0x0F0F0F0F; | |
qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4 | |
qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12 | |
qs1 |= (qh << 2) & 0x00100000; // 18 -> 20 | |
qs1 |= (qh << 9) & 0x10000000; // 19 -> 28 | |
x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + kbx*(2*QI5_1) + kqsx + 0] = qs0; | |
x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + kbx*(2*QI5_1) + kqsx + QI5_1] = qs1; | |
x_qs[i*(2*WARP_SIZE + 1) + kbx*(2*QI5_1) + kqsx + 0] = qs0; | |
x_qs[i*(2*WARP_SIZE + 1) + kbx*(2*QI5_1) + kqsx + QI5_1] = qs1; | |
} | |
const int blocks_per_tile_x_row = WARP_SIZE / QI5_1; | |
const int kbxd = threadIdx.x % blocks_per_tile_x_row; | |
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_1) { | |
int i = i0 + threadIdx.y * QI5_1 + threadIdx.x / blocks_per_tile_x_row; | |
if (need_check) { | |
i = min(i, i_max); | |
} | |
const block_q5_1 * bxi = (const block_q5_1 *) x + kbx0 + i*stride + kbxd; | |
x_dm[i*MMQ_MMA_TILE_X_K_Q8_1 + kbxd] = bxi->dm; | |
x_dm[i*(WARP_SIZE/QI5_1) + i/QI5_1 + kbxd] = bxi->dm; | |
} | |
} | |
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q8_0( | |
const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { | |
int * x_qs = (int *) x_tile; | |
float * x_df = (float *) (x_tile + 2*WARP_SIZE); | |
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q8_0, mmq_y); | |
int * x_qs = (int *) x_tile; | |
float * x_df = (float *) (x_qs + txs.qs); | |
const int kbx = threadIdx.x / QI8_0; | |
const int kqsx = threadIdx.x % QI8_0; | |
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { | |
int i = i0 + threadIdx.y; | |
if (need_check) { | |
i = min(i, i_max); | |
} | |
const block_q8_0 * bxi = (const block_q8_0 *) x + kbx0 + i*stride + kbx; | |
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + 0 + threadIdx.x] = get_int_b2(bxi[0].qs, kqsx); | |
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + WARP_SIZE + threadIdx.x] = get_int_b2(bxi[WARP_SIZE/QI8_0].qs, kqsx); | |
x_qs[i*(2*WARP_SIZE + 1) + 0 + threadIdx.x] = get_int_b2(bxi[0].qs, kqsx); | |
x_qs[i*(2*WARP_SIZE + 1) + WARP_SIZE + threadIdx.x] = get_int_b2(bxi[WARP_SIZE/QI8_0].qs, kqsx); | |
} | |
const int blocks_per_tile_x_row = 2*WARP_SIZE / QI8_0; | |
const int kbxd = threadIdx.x % blocks_per_tile_x_row; | |
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI8_0/2) { | |
int i = i0 + threadIdx.y * (QI8_0/2) + threadIdx.x / blocks_per_tile_x_row; | |
if (need_check) { | |
i = min(i, i_max); | |
} | |
const block_q8_0 * bxi = (const block_q8_0 *) x + kbx0 + i*stride + kbxd; | |
x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + kbxd] = bxi->d; | |
x_df[i*(2*WARP_SIZE/QI8_0) + i/(QI8_0/2) + kbxd] = bxi->d; | |
} | |
} | |
template <int mmq_x, int mmq_y, int nwarps> | |
static __device__ __forceinline__ void vec_dot_q8_0_q8_1_dp4a( | |
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) { | |
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q8_0, mmq_y); | |
const int * x_qs = (const int *) x; | |
const float * x_df = (const float *) x_qs + txs.qs; | |
const int * y_qs = (const int *) y + 4; | |
const float * y_df = (const float *) y; | |
// #pragma unroll | |
for (int k01 = 0; k01 < WARP_SIZE; k01 += VDR_Q8_0_Q8_1_MMQ) { | |
const int k0 = k00 + k01; | |
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { | |
const int j = j0 + threadIdx.y; | |
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { | |
const int i = i0 + threadIdx.x; | |
sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q8_0_q8_1_impl<float, VDR_Q8_0_Q8_1_MMQ> | |
(&x_qs[i*(2*WARP_SIZE + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + k0 % WARP_SIZE], | |
x_df[i*(2*WARP_SIZE/QI8_0) + i/(QI8_0/2) + k0/QI8_0], y_df[j*MMQ_TILE_Y_K + (k0/QI8_1) % (WARP_SIZE/QI8_1)]); | |
} | |
} | |
} | |
} | |
template <int mmq_x, int mmq_y, int nwarps, mmq_q8_1_ds_layout ds_layout> | |
static __device__ __forceinline__ void vec_dot_q8_0_q8_1_mma( | |
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) { | |
typedef mma_int_A_I16K8 mma_A; | |
typedef mma_int_B_J8K8 mma_B; | |
typedef mma_int_C_I16J8 mma_C; | |
constexpr int granularity = mmq_get_granularity_device(mmq_x); | |
constexpr int rows_per_warp = 2 * granularity; | |
constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp. | |
y += (threadIdx.y % ntx) * (mma_B::J*MMQ_TILE_Y_K); | |
const int * x_qs = (const int *) x; | |
const float * x_df = (const float *) x_qs + 2*WARP_SIZE; | |
const int * y_qs = (const int *) y + 4; | |
const float * y_df = (const float *) y; | |
const half2 * y_ds = (const half2 *) y; | |
mma_A A[ntx][WARP_SIZE/QI8_0]; | |
float dA[ntx][mma_C::ne/2][WARP_SIZE/QI8_0]; | |
const int i0 = (threadIdx.y/ntx)*rows_per_warp; | |
for (int n = 0; n < ntx; ++n) { | |
for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_0) { | |
const int k0 = k00 + k01; | |
A[n][k01/QI8_0].load(x_qs + (i0 + n*mma_A::I)*MMQ_MMA_TILE_X_K_Q8_0 + k0, MMQ_MMA_TILE_X_K_Q8_0); | |
} | |
for (int l = 0; l < mma_C::ne/2; ++l) { | |
const int i = i0 + n*mma_A::I + mma_C::get_i(2*l); | |
for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_0) { | |
const int k0 = k00 + k01; | |
dA[n][l][k01/QI8_0] = x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + k0/QI8_0]; | |
} | |
} | |
} | |
for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) { | |
for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_0) { | |
mma_B B; | |
float dB[mma_C::ne/2]; | |
B.load(y_qs + j0*MMQ_TILE_Y_K + k01, MMQ_TILE_Y_K); | |
for (int l = 0; l < mma_C::ne/2; ++l) { | |
const int j = j0 + mma_C::get_j(l); | |
if (ds_layout == MMQ_Q8_1_DS_LAYOUT_D4) { | |
dB[l] = y_df[j*MMQ_TILE_Y_K + k01/QI8_1]; | |
} else { | |
dB[l] = __low2float(y_ds[j*MMQ_TILE_Y_K + k01/QI8_1]); | |
} | |
} | |
for (int n = 0; n < ntx; ++n) { | |
mma_C C; | |
C.mma_K8(A[n][k01/QI8_0], B); | |
for (int l = 0; l < mma_C::ne; ++l) { | |
sum[(j0/mma_C::J + n)*mma_C::ne + l] += C.x[l]*dA[n][l/2][k01/QI8_0]*dB[l%2]; | |
} | |
} | |
} | |
} | |
} | |
template <int mmq_x, int mmq_y, int nwarps> | |
static __device__ __forceinline__ void vec_dot_q8_1_q8_1_dp4a( | |
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) { | |
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q5_1, mmq_y); | |
const int * x_qs = (const int *) x; | |
const half2 * x_dm = (const half2 *) x_qs + txs.qs; | |
const int * y_qs = (const int *) y + 4; | |
const half2 * y_ds = (const half2 *) y; | |
// #pragma unroll | |
for (int k01 = 0; k01 < WARP_SIZE; k01 += VDR_Q8_0_Q8_1_MMQ) { | |
const int k0 = k00 + k01; | |
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { | |
const int j = j0 + threadIdx.y; | |
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { | |
const int i = i0 + threadIdx.x; | |
sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q8_1_q8_1_impl<QR5_1*VDR_Q5_1_Q8_1_MMQ> | |
(&x_qs[i*(2*WARP_SIZE + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + k01], | |
x_dm[i*(WARP_SIZE/QI5_1) + i/QI5_1 + k0/QI8_1], y_ds[j*MMQ_TILE_Y_K + k01/QI8_1]); | |
} | |
} | |
} | |
} | |
template <int mmq_x, int mmq_y, int nwarps> | |
static __device__ __forceinline__ void vec_dot_q8_1_q8_1_mma( | |
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) { | |
typedef mma_int_A_I16K8 mma_A; | |
typedef mma_int_B_J8K8 mma_B; | |
typedef mma_int_C_I16J8 mma_C; | |
constexpr int granularity = mmq_get_granularity_device(mmq_x); | |
constexpr int rows_per_warp = 2 * granularity; | |
constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp. | |
y += (threadIdx.y % ntx) * (mma_B::J*MMQ_TILE_Y_K); | |
const int * x_qs = (const int *) x; | |
const half2 * x_dm = (const half2 *) x_qs + 2*WARP_SIZE; | |
const int * y_qs = (const int *) y + 4; | |
const half2 * y_dm = (const half2 *) y; | |
mma_A A[ntx][WARP_SIZE/QI8_1]; | |
float2 dmA[ntx][mma_C::ne/2][WARP_SIZE/QI8_1]; | |
const int i0 = (threadIdx.y/ntx)*rows_per_warp; | |
for (int n = 0; n < ntx; ++n) { | |
for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_1) { | |
const int k0 = k00 + k01; | |
A[n][k01/QI8_1].load(x_qs + (i0 + n*mma_A::I)*MMQ_MMA_TILE_X_K_Q8_1 + k0, MMQ_MMA_TILE_X_K_Q8_1); | |
} | |
for (int l = 0; l < mma_C::ne/2; ++l) { | |
const int i = i0 + n*mma_A::I + mma_C::get_i(2*l); | |
for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_1) { | |
const int k0 = k00 + k01; | |
dmA[n][l][k01/QI8_1] = __half22float2(x_dm[i*MMQ_MMA_TILE_X_K_Q8_1 + k0/QI8_1]); | |
} | |
} | |
} | |
for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) { | |
for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_1) { | |
mma_B B; | |
float2 dsB[mma_C::ne/2]; | |
B.load(y_qs + j0*MMQ_TILE_Y_K + k01, MMQ_TILE_Y_K); | |
for (int l = 0; l < mma_C::ne/2; ++l) { | |
const int j = j0 + mma_C::get_j(l); | |
dsB[l] = __half22float2(y_dm[j*MMQ_TILE_Y_K + k01/QI8_1]); | |
} | |
for (int n = 0; n < ntx; ++n) { | |
mma_C C; | |
C.mma_K8(A[n][k01/QI8_1], B); | |
for (int l = 0; l < mma_C::ne; ++l) { | |
sum[(j0/mma_C::J + n)*mma_C::ne + l] += dmA[n][l/2][k01/QI8_1].x*dsB[l%2].x*C.x[l]; | |
sum[(j0/mma_C::J + n)*mma_C::ne + l] += dmA[n][l/2][k01/QI8_1].y*dsB[l%2].y; | |
} | |
} | |
} | |
} | |
} | |
template <int mmq_x, int mmq_y, int nwarps> | |
static __device__ __forceinline__ void vec_dot_q8_0_16_q8_1_dp4a( | |
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) { | |
constexpr tile_x_sizes txs = MMQ_DP4A_TXS_Q8_0_16; | |
const int * x_qs = (const int *) x; | |
const float * x_df = (const float *) x_qs + txs.qs; | |
const int * y_qs = (const int *) y + 4; | |
const float * y_df = (const float *) y; | |
// #pragma unroll | |
for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_0) { | |
const int k0 = k00 + k01; | |
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { | |
const int j = j0 + threadIdx.y; | |
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { | |
const int i = i0 + threadIdx.x; | |
sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q8_0_16_q8_1_impl<QI8_0>( | |
&x_qs[i*(2*WARP_SIZE + 1) + k0], | |
&y_qs[j*MMQ_TILE_Y_K + k01], | |
&x_df[i*(2*WARP_SIZE*2/QI8_0) + i/(QI8_0/4) + k0/(QI8_0/2)], | |
y_df[j*MMQ_TILE_Y_K + k01/QI8_1]); | |
} | |
} | |
} | |
} | |
template <int mmq_x, int mmq_y, int nwarps> | |
static __device__ __forceinline__ void vec_dot_q8_0_16_q8_1_mma( | |
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) { | |
typedef mma_int_A_I16K4 mma_A; | |
typedef mma_int_A_I16K8 mma_A_K8; | |
typedef mma_int_B_J8K4 mma_B; | |
typedef mma_int_C_I16J8 mma_C; | |
constexpr int granularity = mmq_get_granularity_device(mmq_x); | |
constexpr int rows_per_warp = 2 * granularity; | |
constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp. | |
y += (threadIdx.y % ntx) * (mma_B::J*MMQ_TILE_Y_K); | |
const int * x_qs = (const int *) x; | |
const float * x_df = (const float *) x_qs + WARP_SIZE*2; | |
const int * y_qs = (const int *) y + 4; | |
const float * y_df = (const float *) y; | |
const int i0 = (threadIdx.y / ntx) * (ntx*mma_A::I); | |
mma_A A[ntx][8]; | |
float dA[ntx][mma_C::ne/2][8]; | |
for (int n = 0; n < ntx; ++n) { | |
for (int k01 = 0; k01 < WARP_SIZE; k01 += 8) { | |
const int k0 = k00 + k01; | |
((mma_A_K8 *) A[n])[k01/8].load(x_qs + (i0 + n*mma_A::I)*MMQ_MMA_TILE_X_K_Q3_K + k0, MMQ_MMA_TILE_X_K_Q3_K); | |
} | |
for (int l = 0; l < mma_C::ne/2; ++l) { | |
const int i = i0 + n*mma_C::I + mma_C::get_i(2*l); | |
for (int k01 = 0; k01 < WARP_SIZE; k01 += 4) { | |
const int k0 = k00 + k01; | |
dA[n][l][k01/4] = x_df[i*MMQ_MMA_TILE_X_K_Q3_K + k0/4]; | |
} | |
} | |
} | |
for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) { | |
for (int k01 = 0; k01 < WARP_SIZE; k01 += QR3_K*VDR_Q3_K_Q8_1_MMQ) { | |
mma_B B[2]; | |
float dB[mma_C::ne/2]; | |
B[0].load(y_qs + j0*MMQ_TILE_Y_K + (k01 + 0), MMQ_TILE_Y_K); | |
B[1].load(y_qs + j0*MMQ_TILE_Y_K + (k01 + mma_B::K), MMQ_TILE_Y_K); | |
for (int l = 0; l < mma_C::ne/2; ++l) { | |
const int j = j0 + mma_C::get_j(l); | |
dB[l] = y_df[j*MMQ_TILE_Y_K + k01/QI8_1]; | |
} | |
for (int n = 0; n < ntx; ++n) { | |
mma_C C[2]; | |
C[0].mma_K4(A[n][k01/4 + 0], B[0]); | |
C[1].mma_K4(A[n][k01/4 + 1], B[1]); | |
for (int l = 0; l < mma_C::ne; ++l) { | |
sum[(j0/mma_C::J + n)*mma_C::ne + l] += dB[l%2]*(C[0].x[l]*dA[n][l/2][k01/4 + 0] + C[1].x[l]*dA[n][l/2][k01/4 + 1]); | |
} | |
} | |
} | |
} | |
GGML_UNUSED(x); GGML_UNUSED(y); GGML_UNUSED(sum); | |
NO_DEVICE_CODE; | |
} | |
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q2_K( | |
const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { | |
int * x_qs = (int *) x_tile; | |
half2 * x_dm = (half2 *) (x_qs + 2*WARP_SIZE); | |
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q2_K, mmq_y); | |
int * x_qs = (int *) x_tile; | |
half2 * x_dm = (half2 *) (x_qs + txs.qs); | |
const int kqsx = threadIdx.x % QI2_K; | |
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * WARP_SIZE/QI2_K) { | |
int i = i0 + threadIdx.y*(WARP_SIZE/QI2_K) + threadIdx.x/QI2_K; | |
if (need_check) { | |
i = min(i, i_max); | |
} | |
const block_q2_K * bxi = (const block_q2_K *) x + kbx0 + i*stride; | |
const int x_ql_0 = get_int_b2(bxi->qs, kqsx); | |
for (int l = 0; l < QR2_K; ++l) { | |
const int k = (kqsx/8)*32 + l*8 + kqsx % 8; | |
const int x_qs_k = (x_ql_0 >> (2*l)) & 0x03030303; | |
x_qs[i*MMQ_MMA_TILE_X_K_Q2_K + k] = x_qs_k; | |
x_qs[i*(2*WARP_SIZE + 1) + k] = x_qs_k; | |
} | |
const int sc_m = bxi->scales[kqsx]; | |
const half2 x_dm_ik = __hmul2(bxi->dm, make_half2(sc_m & 0x0F, sc_m >> 4)); | |
const float2 bxi_dmf = __half22float2(bxi->dm); | |
const half2 x_dm_ik = make_half2(bxi_dmf.x*(sc_m & 0x0F), bxi_dmf.y*(sc_m >> 4)); | |
x_dm[i*MMQ_MMA_TILE_X_K_Q2_K + kqsx] = x_dm_ik; | |
x_dm[i*(WARP_SIZE + 1) + kqsx] = x_dm_ik; | |
} | |
} | |
template <int mmq_x, int mmq_y, int nwarps> | |
static __device__ __forceinline__ void vec_dot_q2_K_q8_1_dp4a( | |
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) { | |
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q2_K, mmq_y); | |
const int * x_qs = (const int *) x; | |
const half2 * x_dm = (const half2 *) x_qs + txs.qs; | |
const int * y_qs = (const int *) y + 4; | |
const half2 * y_ds = (const half2 *) y; | |
float2 y_df[mmq_x/nwarps]; | |
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { | |
const int j = j0 + threadIdx.y; | |
y_df[j0/nwarps] = __half22float2(y_ds[j*MMQ_TILE_Y_K]); | |
} | |
for (int k01 = 0; k01 < WARP_SIZE; k01 += QR2_K*VDR_Q2_K_Q8_1_MMQ) { | |
const int k0 = k00 + k01; | |
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { | |
const int j = j0 + threadIdx.y; | |
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { | |
const int i = i0 + threadIdx.x; | |
if (k01 < WARP_SIZE/2) { | |
constexpr int ns = 2; | |
sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q2_K_q8_1_impl_mmq<ns>( | |
&x_qs[i*(2*WARP_SIZE + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + k01], | |
&x_dm[i*(WARP_SIZE + 1) + k0/4], k01 < WARP_SIZE/2 ? y_df[j0/nwarps].x : y_df[j0/nwarps].y, | |
&y_ds[j*MMQ_TILE_Y_K + (1 + k01/QI8_1)]); | |
} else { | |
constexpr int ns = 1; | |
sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q2_K_q8_1_impl_mmq<ns>( | |
&x_qs[i*(2*WARP_SIZE + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + k01], | |
&x_dm[i*(WARP_SIZE + 1) + k0/4], k01 < WARP_SIZE/2 ? y_df[j0/nwarps].x : y_df[j0/nwarps].y, | |
&y_ds[j*MMQ_TILE_Y_K + (1 + k01/QI8_1)]); | |
} | |
} | |
} | |
} | |
} | |
template <int mmq_x, int mmq_y, int nwarps> | |
static __device__ __forceinline__ void vec_dot_q2_K_q8_1_mma( | |
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) { | |
typedef mma_int_A_I16K4 mma_A; | |
typedef mma_int_A_I16K8 mma_A_K8; | |
typedef mma_int_B_J8K4 mma_B; | |
typedef mma_int_C_I16J8 mma_C; | |
constexpr int granularity = mmq_get_granularity_device(mmq_x); | |
constexpr int rows_per_warp = 2 * granularity; | |
constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp. | |
y += (threadIdx.y % ntx) * (mma_B::J*MMQ_TILE_Y_K); | |
const int * x_qs = (const int *) x; | |
const half2 * x_dm = (const half2 *) x_qs + WARP_SIZE*2; | |
const int * y_qs = (const int *) y + 4; | |
const half2 * y_ds = (const half2 *) y; | |
const int i0 = (threadIdx.y / ntx) * (ntx*mma_A::I); | |
mma_A A[ntx][8]; | |
float dA[ntx][mma_C::ne/2][8]; | |
float mA[ntx][mma_C::ne/2][8]; | |
for (int n = 0; n < ntx; ++n) { | |
for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_1) { | |
const int k0 = k00 + k01; | |
((mma_A_K8 *) A[n])[k01/QI8_1].load(x_qs + (i0 + n*mma_A::I)*MMQ_MMA_TILE_X_K_Q2_K + k0, MMQ_MMA_TILE_X_K_Q2_K); | |
} | |
} | |
for (int n = 0; n < ntx; ++n) { | |
for (int l = 0; l < mma_C::ne/2; ++l) { | |
const int i = i0 + n*mma_C::I + mma_C::get_i(2*l); | |
for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_1/2) { | |
const int k0 = k00 + k01; | |
const float2 dm = __half22float2(x_dm[i*MMQ_MMA_TILE_X_K_Q2_K + k0/(QI8_1/2)]); | |
dA[n][l][k01/(QI8_1/2)] = dm.x; | |
mA[n][l][k01/(QI8_1/2)] = dm.y; | |
} | |
} | |
} | |
for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) { | |
float2 dB[mma_C::ne/2]; | |
for (int l = 0; l < mma_C::ne/2; ++l) { | |
const int j = j0 + mma_C::get_j(l); | |
dB[l] = __half22float2(y_ds[j*MMQ_TILE_Y_K]); | |
} | |
for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_1) { | |
mma_B B[2]; | |
B[0].load(y_qs + j0*MMQ_TILE_Y_K + (k01 + 0), MMQ_TILE_Y_K); | |
B[1].load(y_qs + j0*MMQ_TILE_Y_K + (k01 + mma_B::K), MMQ_TILE_Y_K); | |
mma_C Cm[2]; | |
if (k01 >= WARP_SIZE * 3/4) { | |
mma_A A1; | |
A1.x[0] = 0x01010101; | |
A1.x[1] = 0x01010101; | |
Cm[0].mma_K4(A1, B[0]); | |
Cm[1].mma_K4(A1, B[1]); | |
} | |
for (int n = 0; n < ntx; ++n) { | |
mma_C Cd[2]; | |
Cd[0].mma_K4(A[n][k01/4 + 0], B[0]); | |
Cd[1].mma_K4(A[n][k01/4 + 1], B[1]); | |
for (int l = 0; l < mma_C::ne; ++l) { | |
float tmp = Cd[0].x[l]*dA[n][l/2][k01/4 + 0] + Cd[1].x[l]*dA[n][l/2][k01/4 + 1]; | |
if (k01 >= WARP_SIZE * 3/4) { | |
tmp -= Cm[0].x[l]*mA[n][l/2][k01/4 + 0] + Cm[1].x[l]*mA[n][l/2][k01/4 + 1]; | |
} | |
sum[(j0/mma_C::J + n)*mma_C::ne + l] += tmp*(k01 < WARP_SIZE/2 ? dB[l%2].x : dB[l%2].y); | |
} | |
} | |
} | |
for (int k01 = 0; k01 < WARP_SIZE * 3/4; k01 += QI8_1) { | |
float2 sB[mma_C::ne/2]; | |
for (int l = 0; l < mma_C::ne/2; ++l) { | |
const int j = j0 + mma_C::get_j(l); | |
sB[l] = __half22float2(y_ds[j*MMQ_TILE_Y_K + (1 + k01/QI8_1)]); | |
} | |
for (int n = 0; n < ntx; ++n) { | |
for (int l = 0; l < mma_C::ne; ++l) { | |
sum[(j0/mma_C::J + n)*mma_C::ne + l] -= mA[n][l/2][k01/4 + 0]*sB[l%2].x; | |
sum[(j0/mma_C::J + n)*mma_C::ne + l] -= mA[n][l/2][k01/4 + 1]*sB[l%2].y; | |
} | |
} | |
} | |
} | |
GGML_UNUSED(x); GGML_UNUSED(y); GGML_UNUSED(sum); | |
NO_DEVICE_CODE; | |
} | |
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q3_K( | |
const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { | |
int * x_qs = (int *) x_tile; | |
float * x_df = (float *) (x_qs + WARP_SIZE*2); | |
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q3_K, mmq_y); | |
int * x_qs = (int *) x_tile; | |
float * x_df = (float *) (x_qs + txs.qs); | |
int * x_sc = (int *) (x_df + txs.dm); | |
const int kqsx = threadIdx.x % QI3_K; | |
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * WARP_SIZE/QI3_K) { | |
int i = i0 + threadIdx.y * (WARP_SIZE/QI3_K) + threadIdx.x / QI3_K; | |
if (need_check) { | |
i = min(i, i_max); | |
} | |
const block_q3_K * bxi = (const block_q3_K *) x + kbx0 + i*stride; | |
const int x_ql_0 = get_int_b2(bxi->qs, kqsx); | |
const int x_qh_0 = get_int_b2(bxi->hmask, kqsx % (QI3_K/2)) >> (4 * (kqsx / (QI3_K/2))); | |
for (int l = 0; l < QR3_K; ++l) { | |
const int k = (kqsx/8)*32 + l*8 + kqsx % 8; | |
const int x_ql_k = (x_ql_0 >> (2*l)) & 0x03030303; | |
const int x_qh_k = ((x_qh_0 >> l) << 2) & 0x04040404; | |
const int x_qs_k = __vsubss4(x_ql_k | x_qh_k, 0x04040404); | |
x_qs[i*MMQ_MMA_TILE_X_K_Q3_K + k] = x_qs_k; | |
x_qs[i*(2*WARP_SIZE + 1) + k] = x_qs_k; | |
} | |
} | |
for (int i0 = 0; i0 < mmq_y; i0 += nwarps*8) { | |
int i = i0 + threadIdx.y*8 + threadIdx.x/(WARP_SIZE/8); | |
if (need_check) { | |
i = min(i, i_max); | |
} | |
const block_q3_K * bxi = (const block_q3_K *) x + kbx0 + i*stride; | |
const int ksc = threadIdx.x % (WARP_SIZE/8); | |
const int ksc_low = ksc % (QI3_K/8); | |
const int shift_low = 4 * (ksc / (QI3_K/8)); | |
const int sc_low = (get_int_b2(bxi->scales, ksc_low) >> shift_low) & 0x0F0F0F0F; | |
const int ksc_high = QI3_K/8; | |
const int shift_high = 2 * ksc; | |
const int sc_high = ((get_int_b2(bxi->scales, ksc_high) >> shift_high) << 4) & 0x30303030; | |
const int sc = __vsubss4(sc_low | sc_high, 0x20202020); | |
const int8_t * sc8 = (const int8_t *) ≻ | |
const float d = bxi->d; | |
for (int l = 0; l < sizeof(int); ++l) { | |
x_df[i*MMQ_MMA_TILE_X_K_Q3_K + sizeof(int)*(threadIdx.x % (WARP_SIZE/8)) + l] = d*sc8[l]; | |
} | |
x_sc[i*(WARP_SIZE/8) + i/8 + threadIdx.x % (WARP_SIZE/8)] = sc; | |
} | |
for (int i0 = 0; i0 < mmq_y; i0 += nwarps*WARP_SIZE) { | |
int i = (i0 + threadIdx.y*WARP_SIZE + threadIdx.x) % mmq_y; | |
if (need_check) { | |
i = min(i, i_max); | |
} | |
const block_q3_K * bxi = (const block_q3_K *) x + kbx0 + i*stride; | |
x_df[i] = bxi->d; | |
} | |
} | |
template <int mmq_x, int mmq_y, int nwarps> | |
static __device__ __forceinline__ void vec_dot_q3_K_q8_1_dp4a( | |
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) { | |
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q3_K, mmq_y); | |
const int * x_qs = (const int *) x; | |
const float * x_df = (const float *) x_qs + txs.qs; | |
const int * x_sc = (const int *) x_df + txs.dm; | |
const int * y_qs = (const int *) y + 4; | |
const float * y_df = (const float *) y; | |
// #pragma unroll | |
for (int k01 = 0; k01 < WARP_SIZE; k01 += QR3_K*VDR_Q3_K_Q8_1_MMQ) { | |
const int k0 = k00 + k01; | |
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { | |
const int j = j0 + threadIdx.y; | |
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { | |
const int i = i0 + threadIdx.x; | |
const int8_t * scales = ((const int8_t *) (x_sc + i*(WARP_SIZE/8) + i/8)) + k0/4; | |
sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q3_K_q8_1_impl_mmq( | |
&x_qs[i*(2*WARP_SIZE + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + k01], scales, | |
x_df[i], y_df[j*MMQ_TILE_Y_K + k01/QI8_1]); | |
} | |
} | |
} | |
} | |
static __device__ __forceinline__ int unpack_scales_q45_K(const int * scales, const int ksc) { | |
// scale arrangement after the following two lines: | |
// - ksc == 0: sc0, sc1, sc2, sc3 | |
// - ksc == 1: sc4, sc5, sc6, sc7 | |
// - ksc == 2: m0, m1, m2, m3 | |
// - ksc == 3: m4, m5, m6, m7 | |
return ((scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F) | // lower 4 bits | |
((scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030); // upper 2 bits | |
} | |
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_K( | |
const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { | |
int * x_qs = (int *) x_tile; | |
half2 * x_dm = (half2 *) (x_qs + 2*WARP_SIZE); | |
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q4_K, mmq_y); | |
int * x_qs = (int *) x_tile; | |
half2 * x_dm = (half2 *) (x_qs + txs.qs); | |
int * x_sc = (int *) (x_dm + txs.dm); | |
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { | |
int i = i0 + threadIdx.y; | |
if (need_check) { | |
i = min(i, i_max); | |
} | |
const block_q4_K * bxi = (const block_q4_K *) x + kbx0 + i*stride; | |
const int qs0 = get_int_b4(bxi->qs, threadIdx.x); | |
x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + 16*(threadIdx.x/8) + threadIdx.x % 8 + 0] = (qs0 >> 0) & 0x0F0F0F0F; | |
x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + 16*(threadIdx.x/8) + threadIdx.x % 8 + 8] = (qs0 >> 4) & 0x0F0F0F0F; | |
x_qs[i*(WARP_SIZE + 1) + threadIdx.x] = qs0; | |
} | |
for (int i0 = 0; i0 < mmq_y; i0 += nwarps*16) { | |
int i = (i0 + threadIdx.y*16 + threadIdx.x/(WARP_SIZE/16)) % mmq_y; | |
if (need_check) { | |
i = min(i, i_max); | |
} | |
const block_q4_K * bxi = (const block_q4_K *) x + kbx0 + i*stride; | |
const int * scales = (const int *) bxi->scales; | |
const int ksc = threadIdx.x % (WARP_SIZE/16); | |
const int sc32 = unpack_scales_q45_K(scales, ksc + 0); | |
const int m32 = unpack_scales_q45_K(scales, ksc + 2); | |
const uint8_t * sc8 = (const uint8_t *) &sc32; | |
const uint8_t * m8 = (const uint8_t *) &m32; | |
const half2 dm = bxi->dm * make_half2(1.0f, -1.0f); | |
for (int l = 0; l < sizeof(int); ++l) { | |
x_dm[i*MMQ_MMA_TILE_X_K_Q8_1 + sizeof(int)*ksc + l] = dm*make_half2(sc8[l], m8[l]); | |
} | |
} | |
for (int i0 = 0; i0 < mmq_y; i0 += nwarps*QI4_K) { | |
int i = (i0 + threadIdx.y*QI4_K + threadIdx.x) % mmq_y; | |
if (need_check) { | |
i = min(i, i_max); | |
} | |
const block_q4_K * bxi = (const block_q4_K *) x + kbx0 + i*stride; | |
x_dm[i] = bxi->dm; | |
} | |
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) { | |
int i = (i0 + threadIdx.y * 8 + threadIdx.x / (WARP_SIZE/8)) % mmq_y; | |
if (need_check) { | |
i = min(i, i_max); | |
} | |
const block_q4_K * bxi = (const block_q4_K *) x + kbx0 + i*stride + (threadIdx.x % (WARP_SIZE/8)) / (QI4_K/8); | |
const int * scales = (const int *) bxi->scales; | |
const int ksc = threadIdx.x % (WARP_SIZE/8); | |
const int scales8 = unpack_scales_q45_K(scales, ksc); | |
x_sc[i*(WARP_SIZE/8) + i/8 + ksc] = scales8; | |
} | |
} | |
template <int mmq_x, int mmq_y, int nwarps> | |
static __device__ __forceinline__ void vec_dot_q4_K_q8_1_dp4a( | |
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) { | |
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q4_K, mmq_y); | |
const int * x_qs = (const int *) x; | |
const half2 * x_dm = (const half2 *) x_qs + txs.qs; | |
const int * x_sc = (const int *) x_dm + txs.dm; | |
const int * y_qs = (const int *) y + 4; | |
const half2 * y_ds = (const half2 *) y; | |
// #pragma unroll | |
for (int k01 = 0; k01 < WARP_SIZE; k01 += QR4_K*VDR_Q4_K_Q8_1_MMQ) { | |
const int k0 = k00 + k01; | |
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { | |
const int j = j0 + threadIdx.y; | |
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { | |
const int i = i0 + threadIdx.x; | |
const uint8_t * sc = (const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k0/32] + 2*(k01/16); | |
sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q4_K_q8_1_impl_mmq( | |
&x_qs[i*(WARP_SIZE + 1) + k0/2], &y_qs[j*MMQ_TILE_Y_K + k01], sc, sc+8, | |
x_dm[i], &y_ds[j*MMQ_TILE_Y_K + k01/QI8_1]); | |
} | |
} | |
} | |
} | |
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_K( | |
const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { | |
int * x_qs = (int *) x_tile; | |
half2 * x_dm = (half2 *) (x_qs + WARP_SIZE*2); | |
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q5_K, mmq_y); | |
int * x_qs = (int *) x_tile; | |
half2 * x_dm = (half2 *) (x_qs + txs.qs); | |
int * x_sc = (int *) (x_dm + txs.dm); | |
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { | |
int i = i0 + threadIdx.y; | |
if (need_check) { | |
i = min(i, i_max); | |
} | |
const block_q5_K * bxi = (const block_q5_K *) x + kbx0 + i*stride; | |
const int ky = QR5_K*threadIdx.x; | |
const int ql = get_int_b4(bxi->qs, threadIdx.x); | |
const int ql0 = (ql >> 0) & 0x0F0F0F0F; | |
const int ql1 = (ql >> 4) & 0x0F0F0F0F; | |
const int qh = get_int_b4(bxi->qh, threadIdx.x % (QI5_K/4)); | |
const int qh0 = ((qh >> (2 * (threadIdx.x / (QI5_K/4)) + 0)) << 4) & 0x10101010; | |
const int qh1 = ((qh >> (2 * (threadIdx.x / (QI5_K/4)) + 1)) << 4) & 0x10101010; | |
const int kq0 = ky - ky % (QI5_K/2) + threadIdx.x % (QI5_K/4) + 0; | |
const int kq1 = ky - ky % (QI5_K/2) + threadIdx.x % (QI5_K/4) + QI5_K/4; | |
x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + kq0] = ql0 | qh0; | |
x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + kq1] = ql1 | qh1; | |
x_qs[i*(2*WARP_SIZE + 1) + kq0] = ql0 | qh0; | |
x_qs[i*(2*WARP_SIZE + 1) + kq1] = ql1 | qh1; | |
} | |
for (int i0 = 0; i0 < mmq_y; i0 += nwarps*16) { | |
int i = (i0 + threadIdx.y*16 + threadIdx.x/(WARP_SIZE/16)) % mmq_y; | |
if (need_check) { | |
i = min(i, i_max); | |
} | |
const block_q5_K * bxi = (const block_q5_K *) x + kbx0 + i*stride; | |
const int * scales = (const int *) bxi->scales; | |
const int ksc = threadIdx.x % (WARP_SIZE/16); | |
const int sc32 = unpack_scales_q45_K(scales, ksc + 0); | |
const int m32 = unpack_scales_q45_K(scales, ksc + 2); | |
const uint8_t * sc8 = (const uint8_t *) &sc32; | |
const uint8_t * m8 = (const uint8_t *) &m32; | |
const half2 dm = bxi->dm * make_half2(1.0f, -1.0f); | |
for (int l = 0; l < sizeof(int); ++l) { | |
x_dm[i*MMQ_MMA_TILE_X_K_Q8_1 + sizeof(int)*ksc + l] = dm*make_half2(sc8[l], m8[l]); | |
} | |
} | |
for (int i0 = 0; i0 < mmq_y; i0 += nwarps*QI5_K) { | |
int i = (i0 + threadIdx.y*QI5_K + threadIdx.x) % mmq_y; | |
if (need_check) { | |
i = min(i, i_max); | |
} | |
const block_q5_K * bxi = (const block_q5_K *) x + kbx0 + i*stride; | |
x_dm[i] = bxi->dm; | |
} | |
for (int i0 = 0; i0 < mmq_y; i0 += nwarps*8) { | |
int i = (i0 + threadIdx.y*8 + threadIdx.x/(WARP_SIZE/8)) % mmq_y; | |
if (need_check) { | |
i = min(i, i_max); | |
} | |
const block_q5_K * bxi = (const block_q5_K *) x + kbx0 + i*stride; | |
const int * scales = (const int *) bxi->scales; | |
const int ksc = threadIdx.x % (WARP_SIZE/8); | |
const int scales8 = unpack_scales_q45_K(scales, ksc); | |
x_sc[i*(WARP_SIZE/8) + i/8 + ksc] = scales8; | |
} | |
} | |
template <int mmq_x, int mmq_y, int nwarps> | |
static __device__ __forceinline__ void vec_dot_q5_K_q8_1_dp4a( | |
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) { | |
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q5_K, mmq_y); | |
const int * x_qs = (const int *) x; | |
const half2 * x_dm = (const half2 *) x_qs + txs.qs; | |
const int * x_sc = (const int *) x_dm + txs.dm; | |
const int * y_qs = (const int *) y + 4; | |
const half2 * y_ds = (const half2 *) y; | |
// #pragma unroll | |
for (int k01 = 0; k01 < WARP_SIZE; k01 += QR5_K*VDR_Q5_K_Q8_1_MMQ) { | |
const int k0 = k00 + k01; | |
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { | |
const int j = j0 + threadIdx.y; | |
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { | |
const int i = i0 + threadIdx.x; | |
const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k00/32]) + 2*(k01/16); | |
sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q5_K_q8_1_impl_mmq( | |
&x_qs[i*(QR5_K*WARP_SIZE + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + k01], sc, sc+8, | |
x_dm[i], &y_ds[j*MMQ_TILE_Y_K + k01/QI8_1]); | |
} | |
} | |
} | |
} | |
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q6_K( | |
const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { | |
int * x_qs = (int *) x_tile; | |
float * x_df = (float *) (x_qs + WARP_SIZE*2); | |
int * x_sc = (int *) (x_df + WARP_SIZE/QI6_K); | |
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q6_K, mmq_y); | |
int * x_qs = (int *) x_tile; | |
float * x_df = (float *) (x_qs + txs.qs); | |
int * x_sc = (int *) (x_df + txs.dm); | |
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { | |
int i = i0 + threadIdx.y; | |
if (need_check) { | |
i = min(i, i_max); | |
} | |
const block_q6_K * bxi = (const block_q6_K *) x + kbx0 + i*stride; | |
const int ql = get_int_b2(bxi->ql, threadIdx.x); | |
const int ql0 = (ql >> 0) & 0x0F0F0F0F; | |
const int ql1 = (ql >> 4) & 0x0F0F0F0F; | |
const int qh = get_int_b2(bxi->qh, (QI6_K/4) * (threadIdx.x / (QI6_K/2)) + threadIdx.x % (QI6_K/4)); | |
const int qh0 = ((qh >> ((threadIdx.x & 0x08) >> 2)) << 4) & 0x30303030; | |
const int qh1 = (qh >> ((threadIdx.x & 0x08) >> 2)) & 0x30303030; | |
const int kq0 = 2*threadIdx.x - threadIdx.x % (QI6_K/2) + 0; | |
const int kq1 = 2*threadIdx.x - threadIdx.x % (QI6_K/2) + QI6_K/2; | |
x_qs[i*MMQ_MMA_TILE_X_K_Q6_K + kq0] = __vsubss4(ql0 | qh0, 0x20202020); | |
x_qs[i*MMQ_MMA_TILE_X_K_Q6_K + kq1] = __vsubss4(ql1 | qh1, 0x20202020); | |
x_qs[i*(2*WARP_SIZE + 1) + kq0] = __vsubss4(ql0 | qh0, 0x20202020); | |
x_qs[i*(2*WARP_SIZE + 1) + kq1] = __vsubss4(ql1 | qh1, 0x20202020); | |
} | |
const int blocks_per_tile_x_row = WARP_SIZE / QI6_K; // == 1 if QK_K == 256 | |
const int kbxd = threadIdx.x % blocks_per_tile_x_row; // == 0 if QK_K == 256 | |
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI6_K) { | |
int i = (i0 + threadIdx.y * QI6_K + threadIdx.x / blocks_per_tile_x_row) % mmq_y; | |
if (need_check) { | |
i = min(i, i_max); | |
} | |
const block_q6_K * bxi = (const block_q6_K *) x + kbx0 + i*stride + kbxd; | |
x_df[i*MMQ_MMA_TILE_X_K_Q6_K + kbxd] = bxi->d; | |
x_df[i*(WARP_SIZE/QI6_K) + i/QI6_K + kbxd] = bxi->d; | |
} | |
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) { | |
int i = (i0 + threadIdx.y * 8 + threadIdx.x / (WARP_SIZE/8)) % mmq_y; | |
if (need_check) { | |
i = min(i, i_max); | |
} | |
const block_q6_K * bxi = (const block_q6_K *) x + kbx0 + i*stride + (threadIdx.x % (WARP_SIZE/8)) / 4; | |
x_sc[i*MMQ_MMA_TILE_X_K_Q6_K + threadIdx.x % (WARP_SIZE/8)] = get_int_b2(bxi->scales, threadIdx.x % (QI6_K/8)); | |
x_sc[i*(WARP_SIZE/8) + i/8 + threadIdx.x % (WARP_SIZE/8)] = get_int_b2(bxi->scales, threadIdx.x % (QI6_K/8)); | |
} | |
} | |
template <int mmq_x, int mmq_y, int nwarps> | |
static __device__ __forceinline__ void vec_dot_q6_K_q8_1_dp4a( | |
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) { | |
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q6_K, mmq_y); | |
const int * x_qs = (const int *) x; | |
const float * x_df = (const float *) x_qs + txs.qs; | |
const int * x_sc = (const int *) x_df + txs.dm; | |
const int * y_qs = (const int *) y + 4; | |
const float * y_df = (const float *) y; | |
// #pragma unroll | |
for (int k01 = 0; k01 < WARP_SIZE; k01 += QR6_K*VDR_Q6_K_Q8_1_MMQ) { | |
const int k0 = k00 + k01; | |
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { | |
const int j = j0 + threadIdx.y; | |
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { | |
const int i = i0 + threadIdx.x; | |
const int8_t * sc = ((const int8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k0/16]); | |
sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q6_K_q8_1_impl_mmq( | |
&x_qs[i*(QR6_K*WARP_SIZE + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + k01], sc, | |
x_df[i*(WARP_SIZE/QI6_K) + i/QI6_K], &y_df[j*MMQ_TILE_Y_K + k01/QI8_1]); | |
} | |
} | |
} | |
} | |
template <int mmq_x, int mmq_y, int nwarps> | |
static __device__ __forceinline__ void vec_dot_q6_K_q8_1_mma( | |
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) { | |
typedef mma_int_A_I16K4 mma_A; | |
typedef mma_int_B_J8K4 mma_B; | |
typedef mma_int_C_I16J8 mma_C; | |
constexpr int granularity = mmq_get_granularity_device(mmq_x); | |
constexpr int rows_per_warp = 2 * granularity; | |
constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp. | |
y += (threadIdx.y % ntx) * (mma_B::J*MMQ_TILE_Y_K); | |
const int * x_qs = (const int *) x; | |
const float * x_df = (const float *) x_qs + WARP_SIZE*2; | |
const int * x_sc = (const int *) x_df + WARP_SIZE/QI6_K; | |
const int * y_qs = (const int *) y + 4; | |
const float * y_df = (const float *) y; | |
const int i0 = (threadIdx.y / ntx) * (ntx*mma_A::I); | |
mma_A A[ntx][8]; | |
int scA[ntx][mma_C::ne/2][8]; | |
float dA[ntx][mma_C::ne/2]; | |
for (int n = 0; n < ntx; ++n) { | |
for (int k01 = 0; k01 < WARP_SIZE; k01 += 8) { | |
const int k0 = k00 + k01; | |
A[n][k01/4 + 0].load(x_qs + (i0 + n*mma_A::I)*MMQ_MMA_TILE_X_K_Q6_K + (k0 + 0), MMQ_MMA_TILE_X_K_Q6_K); | |
A[n][k01/4 + 1].load(x_qs + (i0 + n*mma_A::I)*MMQ_MMA_TILE_X_K_Q6_K + (k0 + mma_A::K), MMQ_MMA_TILE_X_K_Q6_K); | |
} | |
for (int k01 = 0; k01 < WARP_SIZE; k01 += 16) { | |
const int k0 = k00 + k01; | |
for (int l = 0; l < mma_C::ne/2; ++l) { | |
const int i = i0 + n*mma_C::I + mma_C::get_i(2*l); | |
const int sc_packed = x_sc[i*MMQ_MMA_TILE_X_K_Q6_K + k0/16]; | |
const int8_t * sc = (const int8_t *) &sc_packed; | |
for (int ksc = 0; ksc < sizeof(int); ++ksc) { | |
scA[n][l][k01/4 + ksc] = sc[ksc]; | |
} | |
} | |
} | |
for (int l = 0; l < mma_C::ne/2; ++l) { | |
const int i = i0 + n*mma_C::I + mma_C::get_i(2*l); | |
dA[n][l] = x_df[i*MMQ_MMA_TILE_X_K_Q6_K]; | |
} | |
} | |
for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) { | |
float tmp[ntx][mma_C::ne] = {{0.0f}}; | |
for (int k01 = 0; k01 < WARP_SIZE; k01 += 8) { | |
mma_B B[2]; | |
float dB[mma_C::ne/2]; | |
B[0].load(y_qs + j0*MMQ_TILE_Y_K + 0 + k01, MMQ_TILE_Y_K); | |
B[1].load(y_qs + j0*MMQ_TILE_Y_K + mma_B::K + k01, MMQ_TILE_Y_K); | |
for (int l = 0; l < mma_C::ne/2; ++l) { | |
const int j = j0 + mma_C::get_j(l); | |
dB[l] = y_df[j*MMQ_TILE_Y_K + k01/QI8_1]; | |
} | |
for (int n = 0; n < ntx; ++n) { | |
mma_C C[2]; | |
C[0].mma_K4(A[n][k01/4 + 0], B[0]); | |
C[1].mma_K4(A[n][k01/4 + 1], B[1]); | |
for (int l = 0; l < mma_C::ne; ++l) { | |
tmp[n][l] += (C[0].x[l]*scA[n][l/2][k01/4 + 0] + C[1].x[l]*scA[n][l/2][k01/4 + 1])*dB[l%2]; | |
} | |
} | |
} | |
for (int n = 0; n < ntx; ++n) { | |
for (int l = 0; l < mma_C::ne; ++l) { | |
sum[(j0/mma_C::J + n)*mma_C::ne + l] += tmp[n][l]*dA[n][l/2]; | |
} | |
} | |
} | |
GGML_UNUSED(x); GGML_UNUSED(y); GGML_UNUSED(sum); | |
NO_DEVICE_CODE; | |
} | |
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_iq4_nl( | |
const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { | |
int * x_qs = (int *) x_tile; | |
float * x_df = (float *) (x_qs + WARP_SIZE*2); | |
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_IQ4_NL, mmq_y); | |
int * x_qs = (int *) x_tile; | |
float * x_df = (float *) (x_qs + txs.qs); | |
const int kbx = threadIdx.x / QI4_NL; | |
const int kqsx = threadIdx.x % QI4_NL; | |
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { | |
int i = i0 + threadIdx.y; | |
if (need_check) { | |
i = min(i, i_max); | |
} | |
const block_iq4_nl * bxi = (const block_iq4_nl *) x + kbx0 + i*stride + kbx; | |
const int aux_q4 = get_int_b2(bxi->qs, kqsx); | |
const int2 v = get_int_from_table_16(aux_q4); | |
const int k0 = 8 * (threadIdx.x / 4) + threadIdx.x % 4; | |
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + k0 + 0] = v.x; | |
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + k0 + 4] = v.y; | |
x_qs[i*(2*WARP_SIZE + 1) + k0 + 0] = v.x; | |
x_qs[i*(2*WARP_SIZE + 1) + k0 + 4] = v.y; | |
} | |
const int blocks_per_tile_x_row = WARP_SIZE / QI4_NL; | |
const int kbxd = threadIdx.x % blocks_per_tile_x_row; | |
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_NL) { | |
int i = i0 + threadIdx.y * QI4_NL + threadIdx.x / blocks_per_tile_x_row; | |
if (need_check) { | |
i = min(i, i_max); | |
} | |
const block_iq4_nl * bxi = (const block_iq4_nl *) x + kbx0 + i*stride + kbxd; | |
x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + kbxd] = __half2float(bxi->d); | |
x_df[i*(WARP_SIZE/4) + i/4 + kbxd] = __half2float(bxi->d); | |
} | |
} | |
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_iq2_xxs( | |
const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { | |
int * x_qs = (int *) x_tile; | |
float * x_df = (float *) (x_qs + WARP_SIZE*2); | |
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_IQ2_XXS, mmq_y); | |
int * x_qs = (int *) x_tile; | |
float * x_df = (float *) (x_qs + txs.qs); | |
const int kqsx = threadIdx.x % (QI2_XXS/2); | |
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * WARP_SIZE/(QI2_XXS/2)) { | |
int i = i0 + threadIdx.y*(2*WARP_SIZE/QI2_XXS) + threadIdx.x/(QI2_XXS/2); | |
if (need_check) { | |
i = min(i, i_max); | |
} | |
const block_iq2_xxs * bxi = (const block_iq2_xxs *) x + kbx0 + i*stride; | |
const int q2 = get_int_b2(bxi->qs, 2*kqsx+0); | |
const uint8_t * aux8 = (const uint8_t *) &q2; | |
const uint32_t aux32 = get_int_b2(bxi->qs, 2*kqsx+1); | |
for (int l = 0; l < QR2_XXS; ++l) { | |
const int * grid_pos = (const int *) (iq2xxs_grid + aux8[l]); | |
const int signs_packed = ksigns_iq2xs[(aux32 >> (7*l)) & 0x7F]; | |
const int signs0 = __vcmpne4(((signs_packed & 0x03) << 7) | ((signs_packed & 0x0C) << 21), 0x00000000); | |
const int grid0 = __vsub4(grid_pos[0] ^ signs0, signs0); | |
const int signs1 = __vcmpne4(((signs_packed & 0x30) << 3) | ((signs_packed & 0xC0) << 17), 0x00000000); | |
const int grid1 = __vsub4(grid_pos[1] ^ signs1, signs1); | |
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + 8*kqsx + (2*l + 0)] = grid0; | |
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + 8*kqsx + (2*l + 1)] = grid1; | |
x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l + 0)] = grid0; | |
x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l + 1)] = grid1; | |
} | |
const int ls = aux32 >> 28; | |
const float d = bxi->d; | |
x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + kqsx] = (ls*d + d/2)/4; | |
x_df[i*(WARP_SIZE/4) + i/4 + kqsx] = (ls*d + d/2)/4; | |
} | |
} | |
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_iq2_xs( | |
const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { | |
int * x_qs = (int *) x_tile; | |
float * x_df = (float *) (x_qs + WARP_SIZE*2); | |
constexpr tile_x_sizes txs = MMQ_DP4A_TXS_Q8_0_16; | |
int * x_qs = (int *) x_tile; | |
float * x_df = (float *) (x_qs + txs.qs); | |
const int kqsx = threadIdx.x % (QI2_XS/2); | |
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * WARP_SIZE/(QI2_XS/2)) { | |
int i = i0 + threadIdx.y*(2*WARP_SIZE/QI2_XS) + threadIdx.x/(QI2_XS/2); | |
if (need_check) { | |
i = min(i, i_max); | |
} | |
const block_iq2_xs * bxi = (const block_iq2_xs *) x + kbx0 + i*stride; | |
const int2 q2_packed = make_int2(get_int_b2(bxi->qs, 2*kqsx+0), get_int_b2(bxi->qs, 2*kqsx+1)); | |
const uint16_t * q2 = (const uint16_t *) &q2_packed; | |
for (int l = 0; l < QR2_XS; ++l) { | |
const uint32_t * grid_pos = (const uint32_t *)(iq2xs_grid + (q2[l] & 0x000001FF)); | |
const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l] >> 9)); | |
const int grid_l = __vsub4(grid_pos[0] ^ signs[0], signs[0]); | |
const int grid_h = __vsub4(grid_pos[1] ^ signs[1], signs[1]); | |
x_qs[i*MMQ_MMA_TILE_X_K_Q3_K + 8*kqsx + (2*l + 0)] = grid_l; | |
x_qs[i*MMQ_MMA_TILE_X_K_Q3_K + 8*kqsx + (2*l + 1)] = grid_h; | |
x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l + 0)] = grid_l; | |
x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l + 1)] = grid_h; | |
} | |
const int ls = bxi->scales[kqsx]; | |
const float d = bxi->d; | |
x_df[i*MMQ_MMA_TILE_X_K_Q3_K + 2*kqsx+0] = ((ls & 0x0F)*d + d/2)/4; | |
x_df[i*MMQ_MMA_TILE_X_K_Q3_K + 2*kqsx+1] = ((ls >> 4)*d + d/2)/4; | |
x_df[i*(2*WARP_SIZE*2/QI8_0) + i/(QI8_0/4) + 2*kqsx+0] = ((ls & 0x0F)*d + d/2)/4; | |
x_df[i*(2*WARP_SIZE*2/QI8_0) + i/(QI8_0/4) + 2*kqsx+1] = ((ls >> 4)*d + d/2)/4; | |
} | |
} | |
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_iq2_s( | |
const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { | |
int * x_qs = (int *) x_tile; | |
float * x_df = (float *) (x_qs + WARP_SIZE*2); | |
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_IQ2_S, mmq_y); | |
int * x_qs = (int *) x_tile; | |
float * x_df = (float *) (x_qs + txs.qs); | |
const int kqsx = threadIdx.x % (QI2_S/2); | |
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * WARP_SIZE/(QI2_S/2)) { | |
int i = i0 + threadIdx.y*(2*WARP_SIZE/QI2_S) + threadIdx.x/(QI2_S/2); | |
if (need_check) { | |
i = min(i, i_max); | |
} | |
const block_iq2_s * bxi = (const block_iq2_s *) x + kbx0 + i*stride; | |
const int qs_packed = get_int_b2(bxi->qs, kqsx); | |
const uint8_t * qs = (const uint8_t *) &qs_packed; | |
const int qh = bxi->qh[kqsx]; | |
const int signs_packed_32 = get_int_b2(bxi->qs, QK_K/32 + kqsx); | |
const uint8_t * signs_packed_8 = (const uint8_t *) &signs_packed_32; | |
for (int l = 0; l < QR2_S; ++l) { | |
const int * grid_pos = (const int *)(iq2s_grid + (qs[l] | ((qh << (8-2*l)) & 0x300))); | |
const int signs0 = __vcmpne4(((signs_packed_8[l] & 0x03) << 7) | ((signs_packed_8[l] & 0x0C) << 21), 0x00000000); | |
const int signs1 = __vcmpne4(((signs_packed_8[l] & 0x30) << 3) | ((signs_packed_8[l] & 0xC0) << 17), 0x00000000); | |
const int grid_l = __vsub4(grid_pos[0] ^ signs0, signs0); | |
const int grid_h = __vsub4(grid_pos[1] ^ signs1, signs1); | |
x_qs[i*MMQ_MMA_TILE_X_K_Q3_K + 8*kqsx + (2*l + 0)] = grid_l; | |
x_qs[i*MMQ_MMA_TILE_X_K_Q3_K + 8*kqsx + (2*l + 1)] = grid_h; | |
x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l + 0)] = grid_l; | |
x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l + 1)] = grid_h; | |
} | |
const int ls = bxi->scales[kqsx]; | |
const float d = bxi->d; | |
x_df[i*MMQ_MMA_TILE_X_K_Q3_K + 2*kqsx+0] = ((ls & 0x0F)*d + d/2)/4; | |
x_df[i*MMQ_MMA_TILE_X_K_Q3_K + 2*kqsx+1] = ((ls >> 4)*d + d/2)/4; | |
x_df[i*(2*WARP_SIZE*2/QI8_0) + i/(QI8_0/4) + 2*kqsx+0] = ((ls & 0x0F)*d + d/2)/4; | |
x_df[i*(2*WARP_SIZE*2/QI8_0) + i/(QI8_0/4) + 2*kqsx+1] = ((ls >> 4)*d + d/2)/4; | |
} | |
} | |
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_iq3_xxs( | |
const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { | |
int * x_qs = (int *) x_tile; | |
float * x_df = (float *) (x_qs + WARP_SIZE*2); | |
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_IQ3_XXS, mmq_y); | |
int * x_qs = (int *) x_tile; | |
float * x_df = (float *) (x_qs + txs.qs); | |
const int kqsx = threadIdx.x % (QI3_XXS/2); | |
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * WARP_SIZE/(QI3_XXS/2)) { | |
int i = i0 + threadIdx.y*(2*WARP_SIZE/QI3_XXS) + threadIdx.x/(QI3_XXS/2); | |
if (need_check) { | |
i = min(i, i_max); | |
} | |
const block_iq3_xxs * bxi = (const block_iq3_xxs *) x + kbx0 + i*stride; | |
const int2 q3_packed = make_int2(get_int_b2(bxi->qs, 2*kqsx+0), get_int_b2(bxi->qs, 2*kqsx+1)); | |
const uint8_t * q3 = (const uint8_t *) &q3_packed; | |
const uint32_t aux32 = get_int_b2(bxi->qs, QK_K/16 + kqsx); | |
for (int l = 0; l < QR3_XXS; ++l) { | |
const int2 grid_pos = make_int2(iq3xxs_grid[q3[2*l+0]], iq3xxs_grid[q3[2*l+1]]); | |
const int * signs = (const int *)(ksigns64 + ((aux32 >> (7*l)) & 0x7F)); | |
const int grid_l = __vsub4(grid_pos.x ^ signs[0], signs[0]); | |
const int grid_h = __vsub4(grid_pos.y ^ signs[1], signs[1]); | |
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + 8*kqsx + (2*l + 0)] = grid_l; | |
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + 8*kqsx + (2*l + 1)] = grid_h; | |
x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l + 0)] = grid_l; | |
x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l + 1)] = grid_h; | |
} | |
const int ls = aux32 >> 28; | |
const float d = bxi->d; | |
x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + kqsx] = (ls*d + d/2)/2; | |
x_df[i*(WARP_SIZE/4) + i/4 + kqsx] = (ls*d + d/2)/2; | |
} | |
} | |
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_iq3_s( | |
const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { | |
int * x_qs = (int *) x_tile; | |
float * x_df = (float *) (x_qs + WARP_SIZE*2); | |
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_IQ3_S, mmq_y); | |
int * x_qs = (int *) x_tile; | |
float * x_df = (float *) (x_qs + txs.qs); | |
const int kqsx = threadIdx.x % (QI3_S/2); | |
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * WARP_SIZE/(QI3_S/2)) { | |
int i = i0 + threadIdx.y*(2*WARP_SIZE/QI3_S) + threadIdx.x/(QI3_S/2); | |
if (need_check) { | |
i = min(i, i_max); | |
} | |
const block_iq3_s * bxi = (const block_iq3_s *) x + kbx0 + i*stride; | |
const int2 qs_packed = make_int2(get_int_b2(bxi->qs, 2*kqsx+0), get_int_b2(bxi->qs, 2*kqsx+1)); | |
const uint8_t * qs = (const uint8_t *) &qs_packed; | |
const int qh = bxi->qh[kqsx]; | |
const int signs_packed_32 = get_int_b2(bxi->signs, kqsx); | |
const uint8_t * signs_packed_8 = (const uint8_t *) &signs_packed_32; | |
for (int l = 0; l < QR3_S; ++l) { | |
const int2 grid_pos = make_int2( | |
iq3s_grid[qs[2*l+0] | ((qh << (8 - 2*l)) & 0x100)], | |
iq3s_grid[qs[2*l+1] | ((qh << (7 - 2*l)) & 0x100)]); | |
const int signs0 = __vcmpne4(((signs_packed_8[l] & 0x03) << 7) | ((signs_packed_8[l] & 0x0C) << 21), 0x00000000); | |
const int signs1 = __vcmpne4(((signs_packed_8[l] & 0x30) << 3) | ((signs_packed_8[l] & 0xC0) << 17), 0x00000000); | |
const int grid_l = __vsub4(grid_pos.x ^ signs0, signs0); | |
const int grid_h = __vsub4(grid_pos.y ^ signs1, signs1); | |
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + 8*kqsx + (2*l+0)] = grid_l; | |
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + 8*kqsx + (2*l+1)] = grid_h; | |
x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l+0)] = grid_l; | |
x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l+1)] = grid_h; | |
} | |
const int ls = 1 + 2*((bxi->scales[kqsx/2] >> (((2*kqsx) << 1) & 0x04)) & 0x0F); | |
const float d = bxi->d; | |
x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + kqsx] = ls*d; | |
x_df[i*(WARP_SIZE/4) + i/4 + kqsx] = ls*d; | |
} | |
} | |
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_iq1_s( | |
const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { | |
int * x_qs = (int *) x_tile; | |
half2 * x_ds = (half2 *) (x_qs + WARP_SIZE*2); | |
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_IQ3_S, mmq_y); | |
int * x_qs = (int *) x_tile; | |
half2 * x_ds = (half2 *) (x_qs + txs.qs); | |
const int kqsx = threadIdx.x % QI1_S; | |
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * WARP_SIZE/QI1_S) { | |
int i = i0 + threadIdx.y*(WARP_SIZE/QI1_S) + threadIdx.x/QI1_S; | |
if (need_check) { | |
i = min(i, i_max); | |
} | |
const block_iq1_s * bxi = (const block_iq1_s *) x + kbx0 + i*stride; | |
const int qs_packed = get_int_b2(bxi->qs, kqsx); | |
const uint8_t * qs = (const uint8_t *) &qs_packed; | |
const int qh = bxi->qh[kqsx]; | |
for (int l = 0; l < QR1_S/2; ++l) { | |
const int grid = iq1s_grid_gpu[qs[l] | (((qh >> (3*l)) & 0x07) << 8)]; | |
const int grid0 = (grid >> 0) & 0x0F0F0F0F; | |
const int grid1 = (grid >> 4) & 0x0F0F0F0F; | |
x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + 8*kqsx + (2*l+0)] = grid0; | |
x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + 8*kqsx + (2*l+1)] = grid1; | |
x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l+0)] = grid0; | |
x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l+1)] = grid1; | |
} | |
const float d1q = __half2float(bxi->d) * (((qh >> 11) & 0x0E) + 1); | |
const float delta = -1.0f + IQ1S_DELTA - (qh & 0x8000) * (2.0f*IQ1S_DELTA/0x8000); | |
x_ds[i*MMQ_MMA_TILE_X_K_Q8_1 + kqsx] = make_half2(d1q, d1q*delta); | |
x_ds[i*(WARP_SIZE/4) + i/4 + kqsx] = make_half2(d1q, d1q*delta); | |
} | |
} | |
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_iq4_xs( | |
const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { | |
int * x_qs = (int *) x_tile; | |
float * x_df = (float *) (x_qs + WARP_SIZE*2); | |
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_IQ4_XS, mmq_y); | |
int * x_qs = (int *) x_tile; | |
float * x_df = (float *) (x_qs + txs.qs); | |
const int kbx = 0; // threadIdx.x / QI4_XS | |
const int kqsx = threadIdx.x; // threadIdx.x % QI4_XS | |
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { | |
int i = i0 + threadIdx.y; | |
if (need_check) { | |
i = min(i, i_max); | |
} | |
const block_iq4_xs * bxi = (const block_iq4_xs *) x + kbx0 + i*stride + kbx; | |
const int aux_q4 = get_int_b4(bxi->qs, kqsx); | |
const int2 v = get_int_from_table_16(aux_q4); | |
const int k0 = 8 * (threadIdx.x / 4) + threadIdx.x % 4; | |
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + k0 + 0] = v.x; | |
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + k0 + 4] = v.y; | |
x_qs[i*(2*WARP_SIZE + 1) + k0 + 0] = v.x; | |
x_qs[i*(2*WARP_SIZE + 1) + k0 + 4] = v.y; | |
} | |
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) { | |
int i = i0 + threadIdx.y * 4 + threadIdx.x / (WARP_SIZE/4); | |
if (need_check) { | |
i = min(i, i_max); | |
} | |
const block_iq4_xs * bxi = (const block_iq4_xs *) x + kbx0 + i*stride; | |
const float d = __half2float(bxi->d); | |
const int ls = ((bxi->scales_l[(threadIdx.x % 8)/2] >> (4*(threadIdx.x % 2))) & 0x0F) | |
| (((bxi->scales_h >> (2*(threadIdx.x % 8))) & 0x03) << 4); | |
x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + threadIdx.x % 8] = d * (ls - 32); | |
x_df[i*(WARP_SIZE/4) + i/4 + threadIdx.x % 8] = d * (ls - 32); | |
} | |
} | |
template<int mmq_x, int mmq_y, int nwarps, bool need_check> | |
static __device__ __forceinline__ void mmq_write_back_dp4a( | |
const float * __restrict__ sum, float * __restrict__ dst, const int & stride, const int & i_max, const int & j_max) { | |
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { | |
const int j = j0 + threadIdx.y; | |
if (j > j_max) { | |
return; | |
} | |
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { | |
const int i = i0 + threadIdx.x; | |
if (need_check && i > i_max) { | |
continue; | |
} | |
dst[j*stride + i] = sum[(j0/nwarps) * (mmq_y/WARP_SIZE) + i0/WARP_SIZE]; | |
} | |
} | |
} | |
template<int mmq_x, int mmq_y, int nwarps, bool need_check> | |
static __device__ __forceinline__ void mmq_write_back_mma( | |
const float * __restrict__ sum, float * __restrict__ dst, const int & stride, const int & i_max, const int & j_max) { | |
typedef mma_int_C_I16J8 mma_C; | |
constexpr int granularity = mmq_get_granularity_device(mmq_x); | |
constexpr int rows_per_warp = 2 * granularity; | |
constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp. | |
const int i0 = (threadIdx.y / ntx) * (ntx*mma_C::I); | |
static_assert(nwarps*mma_C::I == mmq_y, "nwarps*mma_C::I != mmq_y"); | |
for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) { | |
for (int n = 0; n < ntx; ++n) { | |
for (int l = 0; l < mma_C::ne; ++l) { | |
const int j = j0 + (threadIdx.y % ntx) * mma_C::J + mma_C::get_j(l); | |
if (j > j_max) { | |
continue; | |
} | |
const int i = i0 + n*mma_C::I + mma_C::get_i(l); | |
if (need_check && i > i_max) { | |
continue; | |
} | |
dst[j*stride + i] = sum[(j0/mma_C::J + n)*mma_C::ne + l]; | |
} | |
} | |
} | |
} | |
// ------------------------------------------------------------------------------------------------------------------------------------- | |
template <int mmq_x, int mmq_y, int nwarps, bool need_check, ggml_type type> | |
struct mmq_type_traits; | |
template <int mmq_x, int mmq_y, int nwarps, bool need_check> | |
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q4_0> { | |
static constexpr int vdr = VDR_Q4_0_Q8_1_MMQ; | |
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q4_0<mmq_y, nwarps, need_check>; | |
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma<mmq_x, mmq_y, nwarps, MMQ_Q8_1_DS_LAYOUT_DS4>; | |
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q4_0_q8_1_dp4a<mmq_x, mmq_y, nwarps>; | |
}; | |
template <int mmq_x, int mmq_y, int nwarps, bool need_check> | |
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q4_1> { | |
static constexpr int vdr = VDR_Q4_1_Q8_1_MMQ; | |
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q4_1<mmq_y, nwarps, need_check>; | |
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_1_q8_1_mma<mmq_x, mmq_y, nwarps>; | |
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q4_1_q8_1_dp4a<mmq_x, mmq_y, nwarps>; | |
}; | |
template <int mmq_x, int mmq_y, int nwarps, bool need_check> | |
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q5_0> { | |
static constexpr int vdr = VDR_Q5_0_Q8_1_MMQ; | |
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q5_0<mmq_y, nwarps, need_check>; | |
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma<mmq_x, mmq_y, nwarps, MMQ_Q8_1_DS_LAYOUT_D4>; | |
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a<mmq_x, mmq_y, nwarps>; | |
}; | |
template <int mmq_x, int mmq_y, int nwarps, bool need_check> | |
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q5_1> { | |
static constexpr int vdr = VDR_Q5_1_Q8_1_MMQ; | |
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q5_1<mmq_y, nwarps, need_check>; | |
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_1_q8_1_mma<mmq_x, mmq_y, nwarps>; | |
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_1_q8_1_dp4a<mmq_x, mmq_y, nwarps>; | |
}; | |
template <int mmq_x, int mmq_y, int nwarps, bool need_check> | |
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q8_0> { | |
static constexpr int vdr = VDR_Q8_0_Q8_1_MMQ; | |
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q8_0<mmq_y, nwarps, need_check>; | |
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma<mmq_x, mmq_y, nwarps, MMQ_Q8_1_DS_LAYOUT_D4>; | |
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a<mmq_x, mmq_y, nwarps>; | |
}; | |
template <int mmq_x, int mmq_y, int nwarps, bool need_check> | |
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q2_K> { | |
static constexpr int vdr = VDR_Q2_K_Q8_1_MMQ; | |
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q2_K<mmq_y, nwarps, need_check>; | |
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q2_K_q8_1_mma<mmq_x, mmq_y, nwarps>; | |
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q2_K_q8_1_dp4a<mmq_x, mmq_y, nwarps>; | |
}; | |
template <int mmq_x, int mmq_y, int nwarps, bool need_check> | |
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q3_K> { | |
static constexpr int vdr = VDR_Q3_K_Q8_1_MMQ; | |
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q3_K<mmq_y, nwarps, need_check>; | |
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_16_q8_1_mma<mmq_x, mmq_y, nwarps>; | |
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q3_K_q8_1_dp4a<mmq_x, mmq_y, nwarps>; | |
}; | |
template <int mmq_x, int mmq_y, int nwarps, bool need_check> | |
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q4_K> { | |
static constexpr int vdr = VDR_Q4_K_Q8_1_MMQ; | |
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q4_K<mmq_y, nwarps, need_check>; | |
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_1_q8_1_mma<mmq_x, mmq_y, nwarps>; | |
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q4_K_q8_1_dp4a<mmq_x, mmq_y, nwarps>; | |
}; | |
template <int mmq_x, int mmq_y, int nwarps, bool need_check> | |
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q5_K> { | |
static constexpr int vdr = VDR_Q5_K_Q8_1_MMQ; | |
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q5_K<mmq_y, nwarps, need_check>; | |
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_1_q8_1_mma<mmq_x, mmq_y, nwarps>; | |
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q5_K_q8_1_dp4a<mmq_x, mmq_y, nwarps>; | |
}; | |
template <int mmq_x, int mmq_y, int nwarps, bool need_check> | |
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q6_K> { | |
static constexpr int vdr = VDR_Q6_K_Q8_1_MMQ; | |
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q6_K<mmq_y, nwarps, need_check>; | |
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q6_K_q8_1_mma<mmq_x, mmq_y, nwarps>; | |
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q6_K_q8_1_dp4a<mmq_x, mmq_y, nwarps>; | |
}; | |
template <int mmq_x, int mmq_y, int nwarps, bool need_check> | |
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_IQ2_XXS> { | |
static constexpr int vdr = VDR_IQ2_XXS_Q8_1_MMQ; | |
static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq2_xxs<mmq_y, nwarps, need_check>; | |
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma<mmq_x, mmq_y, nwarps, MMQ_Q8_1_DS_LAYOUT_D4>; | |
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a<mmq_x, mmq_y, nwarps>; | |
}; | |
template <int mmq_x, int mmq_y, int nwarps, bool need_check> | |
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_IQ2_XS> { | |
static constexpr int vdr = VDR_IQ2_XS_Q8_1_MMQ; | |
static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq2_xs<mmq_y, nwarps, need_check>; | |
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_16_q8_1_mma<mmq_x, mmq_y, nwarps>; | |
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_16_q8_1_dp4a<mmq_x, mmq_y, nwarps>; | |
}; | |
template <int mmq_x, int mmq_y, int nwarps, bool need_check> | |
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_IQ2_S> { | |
static constexpr int vdr = VDR_IQ2_S_Q8_1_MMQ; | |
static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq2_s<mmq_y, nwarps, need_check>; | |
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_16_q8_1_mma<mmq_x, mmq_y, nwarps>; | |
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_16_q8_1_dp4a<mmq_x, mmq_y, nwarps>; | |
}; | |
template <int mmq_x, int mmq_y, int nwarps, bool need_check> | |
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_IQ3_XXS> { | |
static constexpr int vdr = VDR_IQ3_XXS_Q8_1_MMQ; | |
static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq3_xxs<mmq_y, nwarps, need_check>; | |
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma<mmq_x, mmq_y, nwarps, MMQ_Q8_1_DS_LAYOUT_D4>; | |
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a<mmq_x, mmq_y, nwarps>; | |
}; | |
template <int mmq_x, int mmq_y, int nwarps, bool need_check> | |
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_IQ3_S> { | |
static constexpr int vdr = VDR_IQ3_S_Q8_1_MMQ; | |
static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq3_s<mmq_y, nwarps, need_check>; | |
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma<mmq_x, mmq_y, nwarps, MMQ_Q8_1_DS_LAYOUT_D4>; | |
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a<mmq_x, mmq_y, nwarps>; | |
}; | |
template <int mmq_x, int mmq_y, int nwarps, bool need_check> | |
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_IQ1_S> { | |
static constexpr int vdr = VDR_IQ1_S_Q8_1_MMQ; | |
static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq1_s<mmq_y, nwarps, need_check>; | |
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_1_q8_1_mma<mmq_x, mmq_y, nwarps>; | |
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_1_q8_1_dp4a<mmq_x, mmq_y, nwarps>; | |
}; | |
template <int mmq_x, int mmq_y, int nwarps, bool need_check> | |
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_IQ4_NL> { | |
static constexpr int vdr = VDR_IQ4_NL_Q8_1_MMQ; | |
static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq4_nl<mmq_y, nwarps, need_check>; | |
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma<mmq_x, mmq_y, nwarps, MMQ_Q8_1_DS_LAYOUT_D4>; | |
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a<mmq_x, mmq_y, nwarps>; | |
}; | |
template <int mmq_x, int mmq_y, int nwarps, bool need_check> | |
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_IQ4_XS> { | |
static constexpr int vdr = VDR_IQ4_XS_Q8_1_MMQ; | |
static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq4_xs<mmq_y, nwarps, need_check>; | |
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma<mmq_x, mmq_y, nwarps, MMQ_Q8_1_DS_LAYOUT_D4>; | |
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a<mmq_x, mmq_y, nwarps>; | |
}; | |
template <ggml_type type, int mmq_x, int nwarps, bool need_check, bool fixup> | |
static __device__ void mul_mat_q_process_tile( | |
const char * __restrict__ x, const char * __restrict__ yc, float * __restrict__ dst, float * __restrict__ tmp_fixup, | |
const int & ne00, const int & ne01, const int & stride01, const int & ne10, const int & ne11, const int & stride11, const int & ne0, | |
const int & it, const int & jt, const int & kb0_start, const int & kb0_stop) { | |
constexpr int qk = ggml_cuda_type_traits<type>::qk; | |
constexpr int mmq_y = get_mmq_y_device(); | |
constexpr load_tiles_mmq_t load_tiles = mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, type>::load_tiles; | |
extern __shared__ char data_mul_mat_q[]; | |
int * tile_y = (int *) data_mul_mat_q; | |
int * tile_x = tile_y + GGML_PAD(mmq_x*(WARP_SIZE + WARP_SIZE/QI8_1), nwarps*WARP_SIZE); | |
constexpr vec_dot_mmq_t vec_dot = mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, type>::vec_dot_mma; | |
constexpr mmq_write_back_t write_back = mmq_write_back_mma<mmq_x, mmq_y, nwarps, need_check>; | |
constexpr vec_dot_mmq_t vec_dot = mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, type>::vec_dot_dp4a; | |
constexpr mmq_write_back_t write_back = mmq_write_back_dp4a<mmq_x, mmq_y, nwarps, need_check>; | |
constexpr int blocks_per_iter = MMQ_ITER_K / qk; | |
float sum[mmq_x*mmq_y / (nwarps*WARP_SIZE)] = {0.0f}; | |
const int tile_x_max_i = ne01 - it*mmq_y - 1; | |
const int tile_y_max_j = ne11 - jt*mmq_x - 1; | |
const int * y = (const int *) yc + jt*(mmq_x*sizeof(block_q8_1_mmq)/sizeof(int)); | |
for (int kb0 = kb0_start; kb0 < kb0_stop; kb0 += blocks_per_iter) { | |
load_tiles(x, tile_x, stride01*it*mmq_y + kb0, tile_x_max_i, stride01); | |
{ | |
const int * by0 = y + stride11*(kb0*(qk*sizeof(block_q8_1_mmq) / (4*QK8_1*sizeof(int))) + 0*sizeof(block_q8_1_mmq)/sizeof(int)); | |
for (int l0 = 0; l0 < mmq_x*MMQ_TILE_Y_K; l0 += nwarps*WARP_SIZE) { | |
int l = l0 + threadIdx.y*WARP_SIZE + threadIdx.x; | |
tile_y[l] = by0[l]; | |
} | |
} | |
__syncthreads(); | |
vec_dot(tile_x, tile_y, sum, 0); | |
__syncthreads(); | |
{ | |
const int * by0 = y + stride11*(kb0*(qk*sizeof(block_q8_1_mmq) / (4*QK8_1*sizeof(int))) + 1*sizeof(block_q8_1_mmq)/sizeof(int)); | |
for (int l0 = 0; l0 < mmq_x*MMQ_TILE_Y_K; l0 += nwarps*WARP_SIZE) { | |
int l = l0 + threadIdx.y*WARP_SIZE + threadIdx.x; | |
tile_y[l] = by0[l]; | |
} | |
} | |
__syncthreads(); | |
vec_dot(tile_x, tile_y, sum, WARP_SIZE); | |
__syncthreads(); | |
} | |
if (fixup) { | |
write_back(sum, tmp_fixup + blockIdx.x*(mmq_x*mmq_y), mmq_y, mmq_y, mmq_x); | |
} else { | |
write_back(sum, dst + jt*mmq_x*ne0 + it*mmq_y, ne0, tile_x_max_i, tile_y_max_j); | |
} | |
} | |
// The mul_mat_q kernel implements "stream-k" work partitioning as described in https://arxiv.org/abs/2301.03598 | |
template <ggml_type type, int mmq_x, int nwarps, bool need_check> | |
__launch_bounds__(WARP_SIZE*nwarps, 2) | |
__launch_bounds__(WARP_SIZE*nwarps, 1) | |
__launch_bounds__(WARP_SIZE*nwarps, 2) | |
static __global__ void mul_mat_q( | |
const char * __restrict__ x, const char * __restrict__ yc, float * __restrict__ dst, float * __restrict__ tmp_fixup, | |
const int ne00, const int ne01, const int stride01, const int ne10, const int ne11, const int stride11, const int ne0) { | |
// Skip unused template specializations for faster compilation: | |
if (mmq_x > get_mmq_x_max_device() || mmq_x % mmq_get_granularity_device(mmq_x) != 0) { | |
NO_DEVICE_CODE; | |
return; | |
} | |
constexpr int qk = ggml_cuda_type_traits<type>::qk; | |
constexpr int mmq_y = get_mmq_y_device(); | |
// On AMD or old CUDA the performance with stream-k was worse, use conventional tiling instead: | |
{ | |
constexpr bool fixup = false; | |
mul_mat_q_process_tile<type, mmq_x, nwarps, need_check, fixup> | |
(x, yc, dst, tmp_fixup, ne00, ne01, stride01, ne10, ne11, stride11, ne0, | |
blockIdx.x, blockIdx.y, 0, ne00/qk); | |
return; | |
} | |
const int64_t blocks_per_ne00 = ne00 / qk; | |
constexpr int blocks_per_iter = MMQ_ITER_K / qk; | |
const int ntx = (ne11 + mmq_x - 1) / mmq_x; // Number of tiles x | |
const int nty = (ne01 + mmq_y - 1) / mmq_y; // Number of tiles y | |
// kbc == k block continuous, current index in continuous ijk space. | |
int64_t kbc = (int64_t) blockIdx.x *blocks_per_ne00*ntx*nty / gridDim.x; | |
int64_t kbc_stop = (int64_t)(blockIdx.x + 1)*blocks_per_ne00*ntx*nty / gridDim.x; | |
kbc -= (kbc % blocks_per_ne00) % blocks_per_iter; | |
kbc_stop -= (kbc_stop % blocks_per_ne00) % blocks_per_iter; | |
// kb0 == k index when doing the matrix multiplication for an output tile. | |
int kb0_start = kbc % blocks_per_ne00; | |
int kb0_stop = min(blocks_per_ne00, kb0_start + kbc_stop - kbc); | |
while (kbc < kbc_stop && kb0_stop == blocks_per_ne00) { | |
const int jt = kbc / (blocks_per_ne00*nty); // j index of current tile. | |
const int it = (kbc - jt*(blocks_per_ne00*nty)) / blocks_per_ne00; // i index of current tile. | |
constexpr bool fixup = false; // All but (potentially) the last iterations write their data to dst rather than the fixup buffer. | |
mul_mat_q_process_tile<type, mmq_x, nwarps, need_check, fixup> | |
(x, yc, dst, tmp_fixup, ne00, ne01, stride01, ne10, ne11, stride11, ne0, | |
it, jt, kb0_start, kb0_stop); | |
kbc += blocks_per_ne00; | |
kbc -= kbc % blocks_per_ne00; | |
kb0_start = 0; | |
kb0_stop = min(blocks_per_ne00, kbc_stop - kbc); | |
} | |
if (kbc >= kbc_stop) { | |
return; | |
} | |
const int jt = kbc / (blocks_per_ne00*nty); | |
const int it = (kbc - jt*(blocks_per_ne00*nty)) / blocks_per_ne00; | |
constexpr bool fixup = true; // Last index writes it data to fixup buffer to avoid data races with other blocks. | |
mul_mat_q_process_tile<type, mmq_x, nwarps, need_check, fixup> | |
(x, yc, dst, tmp_fixup, ne00, ne01, stride01, ne10, ne11, stride11, ne0, | |
it, jt, kb0_start, kb0_stop); | |
} | |
template <ggml_type type, int mmq_x, int nwarps, bool need_check> | |
static __global__ void mul_mat_q_stream_k_fixup( | |
float * __restrict__ dst, const float * __restrict__ tmp_last_tile, const int ne00, const int ne01, const int ne11, const int ne0, const int block_num_mmq) { | |
constexpr int mmq_y = get_mmq_y_device(); | |
constexpr int qk = ggml_cuda_type_traits<type>::qk; | |
constexpr int blocks_per_iter = MMQ_ITER_K / qk; | |
const int64_t blocks_per_ne00 = ne00 / qk; | |
float sum[mmq_x*mmq_y / (nwarps*WARP_SIZE)] = {0.0f}; | |
const int ntx = (ne11 + mmq_x - 1) / mmq_x; | |
const int nty = (ne01 + mmq_y - 1) / mmq_y; | |
bool any_fixup = false; | |
const int bidx_start = ((blockIdx.y*nty + blockIdx.x) * block_num_mmq) / (gridDim.y*gridDim.x); | |
const int bidx_stop = ((blockIdx.y*nty + blockIdx.x + 1) * block_num_mmq + gridDim.y*gridDim.x - 1) / (gridDim.y*gridDim.x); | |
int64_t kbc_0; | |
int64_t kbc_stop_0 = (int64_t) bidx_start*blocks_per_ne00*ntx*nty / block_num_mmq; | |
for (int bidx = bidx_start; bidx < bidx_stop; ++bidx) { | |
kbc_0 = kbc_stop_0; | |
kbc_stop_0 = (int64_t) (bidx + 1)*blocks_per_ne00*ntx*nty / block_num_mmq; | |
const int64_t kbc = kbc_0 - (kbc_0 % blocks_per_ne00) % blocks_per_iter; | |
const int64_t kbc_stop = kbc_stop_0 - (kbc_stop_0 % blocks_per_ne00) % blocks_per_iter; | |
// Skip fixup tile if the MMQ CUDA block never wrote anything to it: | |
if (kbc == kbc_stop || kbc_stop % blocks_per_ne00 == 0) { | |
continue; | |
} | |
const int jt = kbc_stop / (blocks_per_ne00*nty); | |
const int it = (kbc_stop - jt*(blocks_per_ne00*nty)) / blocks_per_ne00; | |
// Skip fixup tile if it's unrelated to the output tile assigned to this CUDA block: | |
if (it != blockIdx.x || jt != blockIdx.y) { | |
continue; | |
} | |
any_fixup = true; | |
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { | |
const int j = j0 + threadIdx.y; | |
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { | |
const int i = i0 + threadIdx.x; | |
sum[(j0/nwarps) * (mmq_y/WARP_SIZE) + i0/WARP_SIZE] += tmp_last_tile[bidx*(mmq_x*mmq_y) + j*mmq_y + i]; | |
} | |
} | |
} | |
if (!any_fixup) { | |
return; | |
} | |
dst += blockIdx.y*mmq_x*ne0 + blockIdx.x*mmq_y; | |
const int i_max = ne01 - blockIdx.x*mmq_y - 1; | |
const int j_max = ne11 - blockIdx.y*mmq_x - 1; | |
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { | |
const int j = j0 + threadIdx.y; | |
if (j > j_max) { | |
return; | |
} | |
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { | |
const int i = i0 + threadIdx.x; | |
if (need_check && i > i_max) { | |
continue; | |
} | |
dst[j*ne0 + i] += sum[(j0/nwarps) * (mmq_y/WARP_SIZE) + i0/WARP_SIZE]; | |
} | |
} | |
} | |
struct mmq_args { | |
const char * x; const char * y; float * dst; | |
int64_t ne00; int64_t ne01; int64_t stride01; | |
int64_t ne10; int64_t ne11; int64_t stride11; | |
int64_t ne0; | |
bool use_stream_k; | |
}; | |
template<ggml_type type> | |
static int mmq_get_shmem(const int mmq_x, const int mmq_y, const int cc) { | |
const tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(type, mmq_y); | |
const int mmq_tile_x_k = mmq_get_mma_tile_x_k(type); | |
const int shmem_x = int8_mma_available(cc) ? mmq_y*mmq_tile_x_k*sizeof(int) : txs.qs*sizeof(int) + txs.dm*sizeof(half2) + txs.sc*sizeof(int); | |
const int shmem_y = mmq_x*sizeof(block_q8_1_mmq); | |
return shmem_x + GGML_PAD(shmem_y, MMQ_NWARPS*WARP_SIZE*sizeof(int)); | |
} | |
template <ggml_type type, int mmq_x> | |
static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & args, cudaStream_t stream) { | |
const int id = ggml_cuda_get_device(); | |
const int cc = ggml_cuda_info().devices[id].cc; | |
const int nsm = ggml_cuda_info().devices[id].nsm; | |
const int mmq_y = get_mmq_y_host(cc); | |
const dim3 block_dims(WARP_SIZE, MMQ_NWARPS, 1); | |
const int shmem = mmq_get_shmem<type>(mmq_x, mmq_y, cc); | |
static bool shmem_limit_raised[GGML_CUDA_MAX_DEVICES] = {false}; | |
if (!shmem_limit_raised[id]) { | |
CUDA_CHECK(cudaFuncSetAttribute(mul_mat_q<type, mmq_x, MMQ_NWARPS, false>, cudaFuncAttributeMaxDynamicSharedMemorySize, shmem)); | |
CUDA_CHECK(cudaFuncSetAttribute(mul_mat_q<type, mmq_x, MMQ_NWARPS, true>, cudaFuncAttributeMaxDynamicSharedMemorySize, shmem)); | |
shmem_limit_raised[id] = true; | |
} | |
const int nty = (args.ne01 + mmq_y - 1) / mmq_y; | |
const int ntx = (args.ne11 + mmq_x - 1) / mmq_x; | |
const dim3 block_nums_xy_tiling(nty, ntx, 1); | |
if (!args.use_stream_k) { | |
if (args.ne01 % mmq_y == 0) { | |
constexpr bool need_check = false; | |
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_xy_tiling, block_dims, shmem, stream>>> | |
(args.x, args.y, args.dst, nullptr, args.ne00, args.ne01, args.stride01, args.ne10, args.ne11, args.stride11, args.ne0); | |
} else { | |
constexpr bool need_check = true; | |
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_xy_tiling, block_dims, shmem, stream>>> | |
(args.x, args.y, args.dst, nullptr, args.ne00, args.ne01, args.stride01, args.ne10, args.ne11, args.stride11, args.ne0); | |
} | |
return; | |
} | |
const dim3 block_nums_mmq(nsm, 1, 1); | |
ggml_cuda_pool & pool = ctx.pool(id); | |
ggml_cuda_pool_alloc<float> tmp_fixup(pool, block_nums_mmq.x * mmq_x*mmq_y); | |
if (args.ne01 % mmq_y == 0) { | |
constexpr bool need_check = false; | |
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_mmq, block_dims, shmem, stream>>> | |
(args.x, args.y, args.dst, tmp_fixup.ptr, args.ne00, args.ne01, args.stride01, args.ne10, args.ne11, args.stride11, args.ne0); | |
mul_mat_q_stream_k_fixup<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_xy_tiling, block_dims, 0, stream>>> | |
(args.dst, tmp_fixup.ptr, args.ne00, args.ne01, args.ne11, args.ne0, block_nums_mmq.x); | |
} else { | |
constexpr bool need_check = true; | |
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_mmq, block_dims, shmem, stream>>> | |
(args.x, args.y, args.dst, tmp_fixup.ptr, args.ne00, args.ne01, args.stride01, args.ne10, args.ne11, args.stride11, args.ne0); | |
mul_mat_q_stream_k_fixup<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_xy_tiling, block_dims, 0, stream>>> | |
(args.dst, tmp_fixup.ptr, args.ne00, args.ne01, args.ne11, args.ne0, block_nums_mmq.x); | |
} | |
} | |
template <ggml_type type> | |
void mul_mat_q_case(ggml_backend_cuda_context & ctx, const mmq_args & args, cudaStream_t stream) { | |
const int id = ggml_cuda_get_device(); | |
const int nsm = ggml_cuda_info().devices[id].nsm; | |
const int cc = ggml_cuda_info().devices[id].cc; | |
const int smpbo = ggml_cuda_info().devices[id].smpbo; | |
const int mmq_x_max = get_mmq_x_max_host(cc); | |
const int mmq_y = get_mmq_y_host(cc); | |
const int block_num_y = (args.ne01 + mmq_y - 1) / mmq_y; | |
const bool use_stream_k = cc >= CC_VOLTA && cc < CC_OFFSET_AMD; | |
int mmq_x_best = 0; | |
int nparts_best = INT_MAX; | |
for (int mmq_x = 8; mmq_x <= mmq_x_max && nparts_best > 1; mmq_x += 8) { | |
const int granularity = mmq_get_granularity_host(mmq_x, cc); | |
if (mmq_x % granularity != 0 || mmq_get_shmem<type>(mmq_x, mmq_y, cc) > smpbo) { | |
continue; | |
} | |
const int ntiles_x = (args.ne11 + mmq_x - 1) / mmq_x; | |
const int nwaves_xy_tiling = ntiles_x*block_num_y; | |
const int nparts = use_stream_k ? ntiles_x : nwaves_xy_tiling; | |
if (nparts < nparts_best) { | |
mmq_x_best = mmq_x; | |
nparts_best = nparts; | |
} | |
} | |
switch (mmq_x_best) { | |
case 8: | |
launch_mul_mat_q<type, 8>(ctx, args, stream); | |
break; | |
case 16: | |
launch_mul_mat_q<type, 16>(ctx, args, stream); | |
break; | |
case 24: | |
launch_mul_mat_q<type, 24>(ctx, args, stream); | |
break; | |
case 32: | |
launch_mul_mat_q<type, 32>(ctx, args, stream); | |
break; | |
case 40: | |
launch_mul_mat_q<type, 40>(ctx, args, stream); | |
break; | |
case 48: | |
launch_mul_mat_q<type, 48>(ctx, args, stream); | |
break; | |
case 56: | |
launch_mul_mat_q<type, 56>(ctx, args, stream); | |
break; | |
case 64: | |
launch_mul_mat_q<type, 64>(ctx, args, stream); | |
break; | |
case 72: | |
launch_mul_mat_q<type, 72>(ctx, args, stream); | |
break; | |
case 80: | |
launch_mul_mat_q<type, 80>(ctx, args, stream); | |
break; | |
case 88: | |
launch_mul_mat_q<type, 88>(ctx, args, stream); | |
break; | |
case 96: | |
launch_mul_mat_q<type, 96>(ctx, args, stream); | |
break; | |
case 104: | |
launch_mul_mat_q<type, 104>(ctx, args, stream); | |
break; | |
case 112: | |
launch_mul_mat_q<type, 112>(ctx, args, stream); | |
break; | |
case 120: | |
launch_mul_mat_q<type, 120>(ctx, args, stream); | |
break; | |
case 128: | |
launch_mul_mat_q<type, 128>(ctx, args, stream); | |
break; | |
default: | |
fprintf(stderr, "mmq_x_best=%d\n", mmq_x_best); | |
GGML_ABORT("fatal error"); | |
break; | |
} | |
} | |
extern DECL_MMQ_CASE(GGML_TYPE_Q4_0); | |
extern DECL_MMQ_CASE(GGML_TYPE_Q4_1); | |
extern DECL_MMQ_CASE(GGML_TYPE_Q5_0); | |
extern DECL_MMQ_CASE(GGML_TYPE_Q5_1); | |
extern DECL_MMQ_CASE(GGML_TYPE_Q8_0); | |
extern DECL_MMQ_CASE(GGML_TYPE_Q2_K); | |
extern DECL_MMQ_CASE(GGML_TYPE_Q3_K); | |
extern DECL_MMQ_CASE(GGML_TYPE_Q4_K); | |
extern DECL_MMQ_CASE(GGML_TYPE_Q5_K); | |
extern DECL_MMQ_CASE(GGML_TYPE_Q6_K); | |
extern DECL_MMQ_CASE(GGML_TYPE_IQ2_XXS); | |
extern DECL_MMQ_CASE(GGML_TYPE_IQ2_XS); | |
extern DECL_MMQ_CASE(GGML_TYPE_IQ2_S); | |
extern DECL_MMQ_CASE(GGML_TYPE_IQ3_XXS); | |
extern DECL_MMQ_CASE(GGML_TYPE_IQ3_S); | |
extern DECL_MMQ_CASE(GGML_TYPE_IQ1_S); | |
extern DECL_MMQ_CASE(GGML_TYPE_IQ4_NL); | |
extern DECL_MMQ_CASE(GGML_TYPE_IQ4_XS); | |
// ------------------------------------------------------------------------------------------------------------------------- | |
void ggml_cuda_op_mul_mat_q( | |
ggml_backend_cuda_context & ctx, | |
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i, | |
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols, | |
const int64_t src1_padded_row_size, cudaStream_t stream); | |
bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11); | |