Spaces:
Runtime error
Runtime error
template <bool vals_smem, int ncols_template, int block_size_template> | |
static void soft_max_f32(const float * x, const float * mask, float * dst, const int ncols_par, | |
const int nrows_y, const float scale, const float max_bias, const float m0, | |
const float m1, uint32_t n_head_log2, const sycl::nd_item<3> &item_ct1, float *buf) { | |
const int ncols = ncols_template == 0 ? ncols_par : ncols_template; | |
const int tid = item_ct1.get_local_id(2); | |
const int rowx = item_ct1.get_group(2); | |
const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension | |
const int block_size = block_size_template == 0 ? item_ct1.get_local_range(2) : block_size_template; | |
const int warp_id = item_ct1.get_local_id(2) / WARP_SIZE; | |
const int lane_id = item_ct1.get_local_id(2) % WARP_SIZE; | |
const int nthreads = block_size; | |
const int nwarps = nthreads / WARP_SIZE; | |
int nreduce = nwarps / WARP_SIZE; | |
float slope = 1.0f; | |
// ALiBi | |
if (max_bias > 0.0f) { | |
const uint32_t h = rowx/nrows_y; // head index | |
const float base = h < n_head_log2 ? m0 : m1; | |
const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; | |
slope = sycl::pow(base, float(exp)); | |
} | |
float *vals = vals_smem ? buf + std::max(nwarps, WARP_SIZE) : dst + rowx * ncols; | |
float max_val = -INFINITY; | |
for (int col0 = 0; col0 < ncols; col0 += block_size) { | |
const int col = col0 + tid; | |
if (ncols_template == 0 && col >= ncols) { | |
break; | |
} | |
const int ix = rowx*ncols + col; | |
const int iy = rowy*ncols + col; | |
const float val = x[ix]*scale + (mask ? slope*mask[iy] : 0.0f); | |
vals[col] = val; | |
max_val = sycl::max(max_val, val); | |
} | |
// find the max value in the block | |
max_val = warp_reduce_max(max_val, item_ct1); | |
if (block_size > WARP_SIZE) { | |
if (warp_id == 0) { | |
buf[lane_id] = -INFINITY; | |
for (size_t i = 1; i < nreduce; i += 1) | |
buf[lane_id + i * WARP_SIZE] = -INFINITY; | |
} | |
item_ct1.barrier(sycl::access::fence_space::local_space); | |
if (lane_id == 0) { | |
buf[warp_id] = max_val; | |
} | |
item_ct1.barrier(sycl::access::fence_space::local_space); | |
max_val = buf[lane_id]; | |
for (size_t i = 1; i < nreduce; i += 1) | |
{ | |
max_val = std::max(max_val, buf[lane_id + i * WARP_SIZE]); | |
} | |
max_val = warp_reduce_max(max_val, item_ct1); | |
} | |
float tmp = 0.f; | |
for (int col0 = 0; col0 < ncols; col0 += block_size) { | |
const int col = col0 + tid; | |
if (ncols_template == 0 && col >= ncols) { | |
break; | |
} | |
const float val = sycl::native::exp(vals[col] - max_val); | |
tmp += val; | |
vals[col] = val; | |
} | |
// find the sum of exps in the block | |
tmp = warp_reduce_sum(tmp, item_ct1); | |
if (block_size > WARP_SIZE) { | |
item_ct1.barrier(sycl::access::fence_space::local_space); | |
if (warp_id == 0) { | |
buf[lane_id] = 0.f; | |
for (size_t i = 1; i < nreduce; i += 1) | |
buf[lane_id + i * WARP_SIZE] = 0.f; | |
} | |
item_ct1.barrier(sycl::access::fence_space::local_space); | |
if (lane_id == 0) { | |
buf[warp_id] = tmp; | |
} | |
item_ct1.barrier(sycl::access::fence_space::local_space); | |
tmp = buf[lane_id]; | |
for (size_t i = 1; i < nreduce; i += 1) | |
{ | |
tmp += buf[lane_id + i * WARP_SIZE]; | |
} | |
tmp = warp_reduce_sum(tmp, item_ct1); | |
} | |
const float inv_sum = 1.f / tmp; | |
for (int col0 = 0; col0 < ncols; col0 += block_size) { | |
const int col = col0 + tid; | |
if (ncols_template == 0 && col >= ncols) { | |
return; | |
} | |
const int idst = rowx*ncols + col; | |
dst[idst] = vals[col] * inv_sum; | |
} | |
} | |
template <bool vals_smem, int ncols_template, int block_size_template> | |
static void soft_max_f32_submitter(const float * x, const float * mask, float * dst, const int ncols_par, | |
const int nrows_y, const float scale, const float max_bias, const float m0, | |
const float m1, uint32_t n_head_log2, sycl::range<3> block_nums, sycl::range<3> block_dims, | |
const size_t n_local_scratch, queue_ptr stream) { | |
stream->submit([&](sycl::handler &cgh) { | |
sycl::local_accessor<float, 1> local_buf_acc(n_local_scratch, cgh); | |
cgh.parallel_for( | |
sycl::nd_range<3>(block_nums * block_dims, block_dims), | |
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { | |
soft_max_f32<vals_smem, ncols_template, block_size_template>(x, mask, dst, ncols_par, | |
nrows_y, scale, max_bias, m0, | |
m1, n_head_log2, item_ct1, | |
get_pointer(local_buf_acc)); | |
}); | |
}); | |
} | |
static void soft_max_f32_sycl(const float * x, const float * mask, | |
float * dst, const int ncols_x, const int nrows_x, | |
const int nrows_y, const float scale, const float max_bias, | |
queue_ptr stream, int device) { | |
int nth = WARP_SIZE; | |
int max_block_size = ggml_sycl_info().max_work_group_sizes[device]; | |
while (nth < ncols_x && nth < max_block_size) nth *= 2; | |
if (nth>max_block_size) nth = max_block_size; | |
const sycl::range<3> block_dims(1, 1, nth); | |
const sycl::range<3> block_nums(1, 1, nrows_x); | |
const size_t n_val_tmp = nth / WARP_SIZE; | |
const size_t n_local_scratch = (GGML_PAD(ncols_x, WARP_SIZE) + n_val_tmp); | |
const uint32_t n_head_kv = nrows_x/nrows_y; | |
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv)); | |
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); | |
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); | |
const size_t local_mem_size = stream->get_device().get_info<sycl::info::device::local_mem_size>(); | |
if (n_local_scratch*sizeof(float) < local_mem_size) { | |
if (ncols_x > max_block_size) { | |
soft_max_f32_submitter<true, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale, | |
max_bias, m0, m1, n_head_log2, block_nums, | |
block_dims, n_local_scratch, stream); | |
return; | |
} | |
switch (ncols_x) { | |
case 32: | |
soft_max_f32_submitter<true, 32, 32>(x, mask, dst, ncols_x, nrows_y, scale, | |
max_bias, m0, m1, n_head_log2, block_nums, | |
block_dims, n_local_scratch, stream); | |
break; | |
case 64: | |
soft_max_f32_submitter<true, 64, 64>(x, mask, dst, ncols_x, nrows_y, scale, | |
max_bias, m0, m1, n_head_log2, block_nums, | |
block_dims, n_local_scratch, stream); | |
break; | |
case 128: | |
soft_max_f32_submitter<true, 128, 128>(x, mask, dst, ncols_x, nrows_y, scale, | |
max_bias, m0, m1, n_head_log2, block_nums, | |
block_dims, n_local_scratch, stream); | |
break; | |
case 256: | |
soft_max_f32_submitter<true, 256, 256>(x, mask, dst, ncols_x, nrows_y, scale, | |
max_bias, m0, m1, n_head_log2, block_nums, | |
block_dims, n_local_scratch, stream); | |
break; | |
case 512: | |
soft_max_f32_submitter<true, 512, 512>(x, mask, dst, ncols_x, nrows_y, scale, | |
max_bias, m0, m1, n_head_log2, block_nums, | |
block_dims, n_local_scratch, stream); | |
break; | |
case 1024: | |
soft_max_f32_submitter<true, 1024, 1024>(x, mask, dst, ncols_x, nrows_y, scale, | |
max_bias, m0, m1, n_head_log2, block_nums, | |
block_dims, n_local_scratch, stream); | |
break; | |
case 2048: | |
soft_max_f32_submitter<true, 2048, 1024>(x, mask, dst, ncols_x, nrows_y, scale, | |
max_bias, m0, m1, n_head_log2, block_nums, | |
block_dims, n_local_scratch, stream); | |
break; | |
case 4096: | |
soft_max_f32_submitter<true, 4096, 1024>(x, mask, dst, ncols_x, nrows_y, scale, | |
max_bias, m0, m1, n_head_log2, block_nums, | |
block_dims, n_local_scratch, stream); | |
break; | |
default: | |
soft_max_f32_submitter<true, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale, | |
max_bias, m0, m1, n_head_log2, block_nums, | |
block_dims, n_local_scratch, stream); | |
break; | |
} | |
} else { | |
soft_max_f32_submitter<false, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale, | |
max_bias, m0, m1, n_head_log2, block_nums, | |
block_dims, WARP_SIZE, stream); | |
} | |
} | |
void ggml_sycl_op_soft_max(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, | |
const ggml_tensor *src1, ggml_tensor *dst, | |
const float *src0_dd, const float *src1_dd, | |
float *dst_dd, | |
const queue_ptr &main_stream) { | |
GGML_ASSERT(src0->type == GGML_TYPE_F32); | |
GGML_ASSERT( dst->type == GGML_TYPE_F32); | |
GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional | |
const int64_t ne00 = src0->ne[0]; | |
const int64_t nrows_x = ggml_nrows(src0); | |
const int64_t nrows_y = src0->ne[1]; | |
float scale = 1.0f; | |
float max_bias = 0.0f; | |
memcpy(&scale, dst->op_params + 0, sizeof(float)); | |
memcpy(&max_bias, dst->op_params + 1, sizeof(float)); | |
soft_max_f32_sycl(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00, | |
nrows_x, nrows_y, scale, max_bias, main_stream, ctx.device); | |
} | |