Spaces:
Runtime error
Runtime error
// | |
// logging | |
// | |
static float frand(void) { | |
return (float)rand()/(float)RAND_MAX; | |
} | |
static int irand(int n) { | |
if (n == 0) return 0; | |
return rand()%n; | |
} | |
static void get_random_dims(int64_t * dims, int ndims) { | |
dims[0] = dims[1] = dims[2] = dims[3] = 1; | |
for (int i = 0; i < ndims; i++) { | |
dims[i] = 1 + irand(4); | |
} | |
} | |
static struct ggml_tensor * get_random_tensor_f32( | |
struct ggml_context * ctx0, | |
int ndims, | |
int64_t ne[], | |
float fmin, | |
float fmax) { | |
struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_F32, ndims, ne); | |
switch (ndims) { | |
case 1: | |
for (int i0 = 0; i0 < ne[0]; i0++) { | |
((float *)result->data)[i0] = frand()*(fmax - fmin) + fmin; | |
} | |
break; | |
case 2: | |
for (int i1 = 0; i1 < ne[1]; i1++) { | |
for (int i0 = 0; i0 < ne[0]; i0++) { | |
((float *)result->data)[i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin; | |
} | |
} | |
break; | |
case 3: | |
for (int i2 = 0; i2 < ne[2]; i2++) { | |
for (int i1 = 0; i1 < ne[1]; i1++) { | |
for (int i0 = 0; i0 < ne[0]; i0++) { | |
((float *)result->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin; | |
} | |
} | |
} | |
break; | |
case 4: | |
for (int i3 = 0; i3 < ne[3]; i3++) { | |
for (int i2 = 0; i2 < ne[2]; i2++) { | |
for (int i1 = 0; i1 < ne[1]; i1++) { | |
for (int i0 = 0; i0 < ne[0]; i0++) { | |
((float *)result->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin; | |
} | |
} | |
} | |
} | |
break; | |
default: | |
assert(false); | |
} | |
return result; | |
} | |
static struct ggml_tensor * get_random_tensor_f16( | |
struct ggml_context * ctx0, | |
int ndims, | |
int64_t ne[], | |
float fmin, | |
float fmax) { | |
struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_F16, ndims, ne); | |
switch (ndims) { | |
case 1: | |
for (int i0 = 0; i0 < ne[0]; i0++) { | |
((ggml_fp16_t *)result->data)[i0] = ggml_fp32_to_fp16(frand()*(fmax - fmin) + fmin); | |
} | |
break; | |
case 2: | |
for (int i1 = 0; i1 < ne[1]; i1++) { | |
for (int i0 = 0; i0 < ne[0]; i0++) { | |
((ggml_fp16_t *)result->data)[i1*ne[0] + i0] = ggml_fp32_to_fp16(frand()*(fmax - fmin) + fmin); | |
} | |
} | |
break; | |
case 3: | |
for (int i2 = 0; i2 < ne[2]; i2++) { | |
for (int i1 = 0; i1 < ne[1]; i1++) { | |
for (int i0 = 0; i0 < ne[0]; i0++) { | |
((ggml_fp16_t *)result->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = ggml_fp32_to_fp16(frand()*(fmax - fmin) + fmin); | |
} | |
} | |
} | |
break; | |
case 4: | |
for (int i3 = 0; i3 < ne[3]; i3++) { | |
for (int i2 = 0; i2 < ne[2]; i2++) { | |
for (int i1 = 0; i1 < ne[1]; i1++) { | |
for (int i0 = 0; i0 < ne[0]; i0++) { | |
((ggml_fp16_t *)result->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = ggml_fp32_to_fp16(frand()*(fmax - fmin) + fmin); | |
} | |
} | |
} | |
} | |
break; | |
default: | |
assert(false); | |
} | |
return result; | |
} | |
static struct ggml_tensor * get_random_tensor_i32( | |
struct ggml_context * ctx0, | |
int ndims, | |
int64_t ne[], | |
int32_t imin, | |
int32_t imax) { | |
struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_I32, ndims, ne); | |
switch (ndims) { | |
case 1: | |
for (int i0 = 0; i0 < ne[0]; i0++) { | |
((int32_t *)result->data)[i0] = irand(imax - imin) + imin; | |
} | |
break; | |
case 2: | |
for (int i1 = 0; i1 < ne[1]; i1++) { | |
for (int i0 = 0; i0 < ne[0]; i0++) { | |
((int32_t *)result->data)[i1*ne[0] + i0] = irand(imax - imin) + imin; | |
} | |
} | |
break; | |
case 3: | |
for (int i2 = 0; i2 < ne[2]; i2++) { | |
for (int i1 = 0; i1 < ne[1]; i1++) { | |
for (int i0 = 0; i0 < ne[0]; i0++) { | |
((int32_t *)result->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = irand(imax - imin) + imin; | |
} | |
} | |
} | |
break; | |
case 4: | |
for (int i3 = 0; i3 < ne[3]; i3++) { | |
for (int i2 = 0; i2 < ne[2]; i2++) { | |
for (int i1 = 0; i1 < ne[1]; i1++) { | |
for (int i0 = 0; i0 < ne[0]; i0++) { | |
((int32_t *)result->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = irand(imax - imin) + imin; | |
} | |
} | |
} | |
} | |
break; | |
default: | |
assert(false); | |
} | |
return result; | |
} | |
static bool check_gradient( | |
const char * op_name, | |
struct ggml_context * ctx0, | |
struct ggml_tensor * x[], | |
struct ggml_tensor * f, | |
int ndims, | |
int nargs, | |
float eps, | |
float max_error_abs, | |
float max_error_rel, | |
std::vector<double> expected_vals) { | |
static int n_threads = -1; | |
if (n_threads < 0) { | |
n_threads = GGML_DEFAULT_N_THREADS; | |
const char *env = getenv("GGML_N_THREADS"); | |
if (env) { | |
n_threads = atoi(env); | |
} | |
printf("GGML_N_THREADS = %d\n", n_threads); | |
} | |
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, GGML_DEFAULT_GRAPH_SIZE, true); | |
struct ggml_cgraph * gb = ggml_new_graph_custom(ctx0, GGML_DEFAULT_GRAPH_SIZE, true); | |
ggml_build_forward_expand(gf, f); | |
ggml_graph_cpy(gf, gb); | |
ggml_build_backward_expand(ctx0, gf, gb, false); | |
ggml_graph_compute_with_ctx(ctx0, gf, n_threads); | |
ggml_graph_reset(gb); | |
if (f->grad) { | |
ggml_set_f32(f->grad, 1.0f); | |
} | |
ggml_graph_compute_with_ctx(ctx0, gb, n_threads); | |
// ggml_graph_dump_dot(gf, NULL, "test-grad0-forward.dot"); | |
// ggml_graph_dump_dot(gb, gf, "test-grad0-backward.dot"); | |
for (int i = 0; i < nargs; ++i) { | |
bool all_g0_bad = true; | |
const int nelements = ggml_nelements(x[i]); | |
for (int k = 0; k < nelements; ++k) { | |
// Calculate gradient numerically: | |
const float x0 = ggml_get_f32_1d(x[i], k); | |
const float xm = x0 - eps; | |
const float xp = x0 + eps; | |
ggml_set_f32_1d(x[i], k, xp); | |
ggml_graph_compute_with_ctx(ctx0, gf, n_threads); | |
const double f0 = ggml_get_f32_1d(f, 0); | |
ggml_set_f32_1d(x[i], k, xm); | |
ggml_graph_compute_with_ctx(ctx0, gf, n_threads); | |
const double f1 = ggml_get_f32_1d(f, 0); | |
const double g0 = (f0 - f1)/(2.0*(double) eps); | |
// The numerical calculation of the gradient fails around noncontinuities (e.g. 0 for ReLU). | |
// In such cases, provide a vector of expected values and skip the comparison for failed calculations. | |
if (!expected_vals.empty()) { | |
bool matches_any = false; | |
for (const double & ev : expected_vals) { | |
const double error_abs = std::fabs(g0 - ev); | |
if (error_abs > max_error_abs) { | |
continue; | |
} | |
const double error_rel = g0 != 0.0 ? fabs(g0 - ev)/fabs(g0) : 0.0; | |
if (error_rel > max_error_rel) { | |
continue; | |
} | |
matches_any = true; | |
break; | |
} | |
if (!matches_any) { | |
continue; | |
} | |
} | |
all_g0_bad = false; | |
ggml_set_f32_1d(x[i], k, x0); | |
// compute gradient using backward graph | |
ggml_graph_reset(gb); | |
if (f->grad) { | |
ggml_set_f32(f->grad, 1.0f); | |
} | |
ggml_graph_compute_with_ctx(ctx0, gb, n_threads); | |
const double g1 = ggml_get_f32_1d(x[i]->grad, k); | |
const double error_abs = fabs(g0 - g1); | |
const double error_rel = g0 != 0.0 ? fabs(g0 - g1)/fabs(g0) : 0.0; | |
if (error_abs > max_error_abs || error_rel > max_error_rel) { | |
printf("%s: ndims=%d, i=%d, k=%d, x0=%f, xm=%f, xp=%f, f0=%f, f1=%f, g0=%f, g1=%f, eps=%f, error_abs=%f, error_rel=%f\n", | |
op_name, ndims, i, k, x0, xm, xp, f0, f1, g0, g1, eps, error_abs, error_rel); | |
//assert(false); | |
return false; | |
} | |
} | |
if (all_g0_bad) { | |
printf("%s: numerical calculation of the gradient failed for all values\n", op_name); | |
return false; | |
} | |
} | |
return true; | |
} | |
// TODO: clean-up this .. | |
static bool check_mat_mul( | |
const struct ggml_tensor * y, | |
const struct ggml_tensor * x0, | |
const struct ggml_tensor * x1) { | |
float * dst = (float *) y->data; | |
float * src0 = (float *) x0->data; | |
float * src1 = (float *) x1->data; | |
const int nc = x0->ne[1]; | |
const int nr = x1->ne[1]; | |
const int nk = x0->ne[0]; | |
GGML_PRINT_DEBUG("check_mat_mul: nc=%d, nr=%d, nk=%d\n", nc, nr, nk); | |
GGML_PRINT_DEBUG("x0:\n"); | |
for (int j = 0; j < x0->ne[1]; ++j) { | |
for (int i = 0; i < x0->ne[0]; ++i) { | |
GGML_PRINT_DEBUG("%6.3f ", src0[j*nk + i]); | |
} | |
GGML_PRINT_DEBUG("\n"); | |
} | |
GGML_PRINT_DEBUG("\n"); | |
GGML_PRINT_DEBUG("x1:\n"); | |
for (int j = 0; j < x1->ne[1]; ++j) { | |
for (int i = 0; i < x1->ne[0]; ++i) { | |
GGML_PRINT_DEBUG("%6.3f ", src1[j*nk + i]); | |
} | |
GGML_PRINT_DEBUG("\n"); | |
} | |
GGML_PRINT_DEBUG("\n"); | |
GGML_PRINT_DEBUG("y: n_dims = %d, (%lld, %lld)\n", y->n_dims, y->ne[0], y->ne[1]); | |
for (int j = 0; j < y->ne[1]; ++j) { | |
for (int i = 0; i < y->ne[0]; ++i) { | |
GGML_PRINT_DEBUG("%6.3f ", dst[j*nr + i]); | |
} | |
GGML_PRINT_DEBUG("\n"); | |
} | |
for (int i = 0; i < nr; ++i) { | |
for (int j = 0; j < nc; ++j) { | |
float sum = 0.0f; | |
for (int k = 0; k < nk; ++k) { | |
sum += src0[j*nk + k]*src1[i*nk + k]; | |
} | |
if (fabsf(dst[i*nc + j] - sum) > 1e-5f) { | |
fprintf(stderr, "check_mat_mul: dst[%d] = %f, sum = %f\n", i*nc + j, dst[i*nc + j], sum); | |
assert(false); | |
return false; | |
} | |
} | |
} | |
return true; | |
} | |
int main(int argc, const char ** argv) { | |
struct ggml_init_params params = { | |
/* .mem_size = */ 256*1024*1024, | |
/* .mem_buffer = */ NULL, | |
/* .no_alloc = */ false, | |
}; | |
int64_t ne[4]; | |
int all_permutations[4 * NUM_PERMUTATIONS]; | |
{ | |
int count = 0; | |
for (int ax0=0; ax0<4; ++ax0) { | |
for (int ax1=0; ax1<4; ++ax1) { | |
if (ax1 == ax0) continue; | |
for (int ax2=0; ax2<4; ++ax2) { | |
if (ax2 == ax0) continue; | |
if (ax2 == ax1) continue; | |
for (int ax3=0; ax3<4; ++ax3) { | |
if (ax3 == ax0) continue; | |
if (ax3 == ax1) continue; | |
if (ax3 == ax2) continue; | |
assert(count < NUM_PERMUTATIONS); | |
all_permutations[count*4+0] = ax0; | |
all_permutations[count*4+1] = ax1; | |
all_permutations[count*4+2] = ax2; | |
all_permutations[count*4+3] = ax3; | |
++count; | |
} | |
} | |
} | |
} | |
} | |
unsigned seed_iter = 1; | |
// original loop: 1000 | |
int niter = 4; | |
const char *env = getenv("GGML_NLOOP"); | |
if (env != NULL) { | |
niter = atoi(env); | |
} | |
if (argc > 1) { | |
niter = atoi(argv[1]); | |
} | |
for (int iter = 0; iter < niter; ++iter) { | |
srand(seed_iter); | |
seed_iter = rand(); | |
unsigned seed = rand(); | |
printf("test-grad0: iter:%d/%d\n", (iter+1), niter); | |
struct ggml_context * ctx0 = ggml_init(params); | |
get_random_dims(ne, 4); | |
struct ggml_tensor * x[MAX_NARGS]; | |
// add f32 | |
{ | |
srand(seed); | |
const int nargs = 2; | |
for (int ndims = 1; ndims <= 4; ++ndims) { | |
for (int i = 0; i < nargs; ++i) { | |
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[i]); | |
} | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_add(ctx0, x[0], x[1])); | |
check_gradient("add f32", ctx0, x, f, ndims, nargs, 1e-3f, 2e-3f, 2e-3f, {}); | |
} | |
} | |
// add f16 | |
{ | |
srand(seed); | |
const int nargs = 2; | |
for (int ndims = 1; ndims <= 4; ++ndims) { | |
for (int i = 0; i < nargs; ++i) { | |
x[i] = get_random_tensor_f16(ctx0, ndims, ne, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[i]); | |
} | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_add(ctx0, x[0], x[1])); | |
check_gradient("add f16", ctx0, x, f, ndims, nargs, 1e-1f, 2e-1f, 2e-1f, {}); | |
} | |
} | |
// sub | |
{ | |
srand(seed); | |
const int nargs = 2; | |
for (int ndims = 1; ndims <= 4; ++ndims) { | |
for (int i = 0; i < nargs; ++i) { | |
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[i]); | |
} | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_sub(ctx0, x[0], x[1])); | |
check_gradient("sub", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f, {}); | |
} | |
} | |
// mul | |
{ | |
srand(seed); | |
const int nargs = 2; | |
for (int ndims = 1; ndims <= 4; ++ndims) { | |
for (int i = 0; i < nargs; ++i) { | |
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[i]); | |
} | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_mul(ctx0, x[0], x[1])); | |
check_gradient("mul", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); | |
} | |
} | |
// div | |
{ | |
srand(seed); | |
const int nargs = 2; | |
for (int ndims = 1; ndims <= 4; ++ndims) { | |
for (int i = 0; i < nargs; ++i) { | |
x[i] = get_random_tensor_f32(ctx0, ndims, ne, 0.5f, 1.0f); | |
ggml_set_param(ctx0, x[i]); | |
} | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_div(ctx0, x[0], x[1])); | |
check_gradient("div", ctx0, x, f, ndims, nargs, 1e-3f, 1e-1f, 1e-1f, {}); | |
} | |
} | |
// sqr | |
{ | |
srand(seed); | |
const int nargs = 1; | |
for (int ndims = 1; ndims <= 2; ++ndims) { | |
for (int i = 0; i < nargs; ++i) { | |
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[i]); | |
} | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_sqr(ctx0, x[0])); | |
check_gradient("sqr", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); | |
} | |
} | |
// sqrt | |
{ | |
srand(seed); | |
const int nargs = 1; | |
for (int ndims = 1; ndims <= 2; ++ndims) { | |
for (int i = 0; i < nargs; ++i) { | |
x[i] = get_random_tensor_f32(ctx0, ndims, ne, 2.0f*1e-3f, 1.0f); | |
ggml_set_param(ctx0, x[i]); | |
} | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_sqrt(ctx0, x[0])); | |
check_gradient("sqrt", ctx0, x, f, ndims, nargs, 1e-3f, 2e-2f, 1e-1f, {}); | |
} | |
} | |
// log | |
{ | |
srand(seed); | |
const int nargs = 1; | |
for (int ndims = 1; ndims <= 2; ++ndims) { | |
for (int i = 0; i < nargs; ++i) { | |
x[i] = get_random_tensor_f32(ctx0, ndims, ne, 2.0f*1e-3f, 1.0f); | |
ggml_set_param(ctx0, x[i]); | |
} | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_log(ctx0, x[0])); | |
check_gradient("log", ctx0, x, f, ndims, nargs, 1e-3f, INFINITY, 1e-1f, {}); | |
} | |
} | |
// sum | |
{ | |
srand(seed); | |
const int nargs = 1; | |
for (int ndims = 1; ndims <= 2; ++ndims) { | |
for (int i = 0; i < nargs; ++i) { | |
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[i]); | |
} | |
struct ggml_tensor * f = ggml_sum(ctx0, x[0]); | |
check_gradient("sum", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f, {}); | |
} | |
} | |
// sum_rows | |
{ | |
srand(seed); | |
const int nargs = 1; | |
for (int ndims = 1; ndims <= 4; ++ndims) { | |
for (int i = 0; i < nargs; ++i) { | |
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[i]); | |
} | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_sqr(ctx0, ggml_sum_rows(ctx0, x[0]))); | |
check_gradient("sum_rows", ctx0, x, f, ndims, nargs, 1e-3f, 1e-2f, INFINITY, {}); | |
} | |
} | |
// mean, not yet fully implemented | |
if(0) | |
{ | |
srand(seed); | |
const int nargs = 1; | |
for (int ndims = 1; ndims <= 4; ++ndims) { | |
for (int i = 0; i < nargs; ++i) { | |
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[i]); | |
} | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_mean(ctx0, x[0])); | |
check_gradient("mean", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f, {}); | |
} | |
} | |
// argmax | |
if (0) | |
{ | |
srand(seed); | |
const int nargs = 1; | |
for (int ndims = 1; ndims <= 4; ++ndims) { | |
for (int i = 0; i < nargs; ++i) { | |
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[i]); | |
} | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_argmax(ctx0, x[0])); | |
check_gradient("argmax", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f, {}); | |
} | |
} | |
// repeat | |
{ | |
srand(seed); | |
int64_t ne2[4]; | |
get_random_dims(ne2, 4); | |
ne2[0] = ne[0] * ne2[0]; | |
ne2[1] = ne[1] * ne2[1]; | |
ne2[2] = 1; | |
ne2[3] = 1; | |
const int nargs = 1; | |
for (int ndims = 1; ndims <= 2; ++ndims) { | |
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); | |
x[1] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[0]); | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_sqr(ctx0, ggml_sub(ctx0, x[1], ggml_repeat(ctx0, x[0], x[1])))); | |
check_gradient("repeat", ctx0, x, f, ndims, nargs, 1e-3f, 1e-2f, INFINITY, {}); | |
} | |
} | |
// repeat back | |
{ | |
srand(seed); | |
int64_t ne2[4]; | |
get_random_dims(ne2, 4); | |
ne2[0] = ne[0] * ne2[0]; | |
ne2[1] = ne[1] * ne2[1]; | |
ne2[2] = 1; | |
ne2[3] = 1; | |
const int nargs = 1; | |
for (int ndims = 1; ndims <= 2; ++ndims) { | |
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); | |
x[1] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[0]); | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_sqr(ctx0, ggml_sub(ctx0, x[0], ggml_repeat_back(ctx0, x[1], x[0])))); | |
check_gradient("repeat back", ctx0, x, f, ndims, nargs, 1e-3f, 1e-2f, INFINITY, {}); | |
} | |
} | |
// abs | |
{ | |
const int nargs = 1; | |
for (int ndims = 1; ndims <= 4; ++ndims) { | |
for (int i = 0; i < nargs; ++i) { | |
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[i]); | |
} | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_abs(ctx0, x[0])); | |
check_gradient("abs", ctx0, x, f, ndims, nargs, 1e-3f, INFINITY, 1e-3f, {-1.0, 1.0}); | |
} | |
} | |
// sgn | |
{ | |
srand(seed); | |
const int nargs = 1; | |
for (int ndims = 1; ndims <= 4; ++ndims) { | |
for (int i = 0; i < nargs; ++i) { | |
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[i]); | |
} | |
struct ggml_tensor* f = ggml_sum(ctx0, ggml_sgn(ctx0, x[0])); | |
check_gradient("sgn", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f, {0.0}); | |
} | |
} | |
// neg | |
{ | |
srand(seed); | |
const int nargs = 1; | |
for (int ndims = 1; ndims <= 4; ++ndims) { | |
for (int i = 0; i < nargs; ++i) { | |
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[i]); | |
} | |
struct ggml_tensor* f = ggml_sum(ctx0, ggml_neg(ctx0, x[0])); | |
check_gradient("neg", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f, {}); | |
} | |
} | |
// step | |
{ | |
srand(seed); | |
const int nargs = 1; | |
for (int ndims = 1; ndims <= 4; ++ndims) { | |
for (int i = 0; i < nargs; ++i) { | |
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[i]); | |
} | |
struct ggml_tensor* f = ggml_sum(ctx0, ggml_step(ctx0, x[0])); | |
check_gradient("step", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f, {0.0}); | |
} | |
} | |
// tanh, not yet fully implemented | |
if(0) | |
{ | |
srand(seed); | |
const int nargs = 1; | |
for (int ndims = 1; ndims <= 4; ++ndims) { | |
for (int i = 0; i < nargs; ++i) { | |
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[i]); | |
} | |
struct ggml_tensor* f = ggml_sum(ctx0, ggml_tanh(ctx0, x[0])); | |
check_gradient("tanh", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f, {}); | |
} | |
} | |
// mul_mat | |
{ | |
srand(seed); | |
const int nargs = 2; | |
for (int ndims = 2; ndims <= 4; ++ndims) { | |
int max_nrep = (ndims >= 3) ? 2 : 1; | |
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); | |
for (int nrep2 = 1; nrep2 < max_nrep; ++nrep2) { | |
for (int nrep3 = 1; nrep3 < max_nrep; ++nrep3) { | |
{ | |
int64_t ne2[4]; | |
get_random_dims(ne2, 4); | |
ne2[0] = ne[0]; | |
ne2[2] = nrep2 * ne[2]; | |
ne2[3] = nrep3 * ne[3]; | |
x[1] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f); | |
} | |
ggml_set_param(ctx0, x[0]); | |
ggml_set_param(ctx0, x[1]); | |
struct ggml_tensor * m = ggml_mul_mat(ctx0, x[1], x[0]); | |
struct ggml_tensor * f = ggml_sum(ctx0, m); | |
GGML_PRINT_DEBUG("testing: mul_mat, [%lld, %lld] (%d) * [%lld, %lld] (%d)\n", x[1]->ne[0], x[1]->ne[1], x[1]->n_dims, x[0]->ne[0], x[0]->ne[1], x[0]->n_dims); | |
check_gradient("mul_mat", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); | |
if (ndims == 2) { | |
// check_mat_mul does not support ndims > 2 | |
check_mat_mul(m, x[1], x[0]); | |
} | |
} | |
} | |
} | |
} | |
// elu, not yet fully implemented | |
if(0) | |
{ | |
srand(seed); | |
const int nargs = 1; | |
for (int ndims = 1; ndims <= 4; ++ndims) { | |
for (int i = 0; i < nargs; ++i) { | |
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[i]); | |
} | |
struct ggml_tensor* f = ggml_sum(ctx0, ggml_elu(ctx0, x[0])); | |
check_gradient("elu", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f, {}); | |
} | |
} | |
// relu | |
{ | |
srand(seed); | |
const int nargs = 1; | |
for (int ndims = 1; ndims <= 4; ++ndims) { | |
for (int i = 0; i < nargs; ++i) { | |
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[i]); | |
} | |
struct ggml_tensor* f = ggml_sum(ctx0, ggml_relu(ctx0, x[0])); | |
check_gradient("relu", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {0.0, 1.0}); | |
} | |
} | |
// gelu, not yet fully implemented | |
if(0) | |
{ | |
srand(seed); | |
const int nargs = 1; | |
for (int ndims = 1; ndims <= 4; ++ndims) { | |
for (int i = 0; i < nargs; ++i) { | |
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[i]); | |
} | |
struct ggml_tensor* f = ggml_sum(ctx0, ggml_gelu(ctx0, x[0])); | |
check_gradient("gelu", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f, {}); | |
} | |
} | |
// silu | |
{ | |
srand(seed); | |
const int nargs = 1; | |
for (int ndims = 1; ndims <= 2; ++ndims) { | |
for (int i = 0; i < nargs; ++i) { | |
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[i]); | |
} | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_silu(ctx0, x[0])); | |
// due to GGML_SILU_FP16 the finite difference method will be slightly wrong -> increase error bounds. | |
check_gradient("silu", ctx0, x, f, ndims, nargs, 1e-3f, 0.5, INFINITY, {}); | |
check_gradient("silu", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); | |
} | |
} | |
// rms_norm | |
{ | |
srand(seed); | |
const int nargs = 1; | |
for (int ndims = 1; ndims <= 2; ++ndims) { | |
for (int i = 0; i < nargs; ++i) { | |
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[i]); | |
} | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_rms_norm(ctx0, x[0], 1e-6f)); | |
check_gradient("rms_norm", ctx0, x, f, ndims, nargs, 1e-4f, 1.0f, INFINITY, {}); | |
} | |
} | |
// scale | |
{ | |
srand(seed); | |
const int nargs = 1; | |
for (int ndims = 1; ndims <= 2; ++ndims) { | |
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); | |
const float s = -1.0f + 2.0f*frand(); | |
ggml_set_param(ctx0, x[0]); | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_scale(ctx0, x[0], s)); | |
check_gradient("scale", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); | |
} | |
} | |
// cpy f32 | |
{ | |
srand(seed); | |
const int nargs = 2; | |
for (int ndims = 1; ndims <= 2; ++ndims) { | |
for (int i = 0; i < nargs; ++i) { | |
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[i]); | |
} | |
// x[1] is overwritten by x[0], so the gradients don't propagate to x[1] | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_cpy(ctx0, x[0], x[1])); | |
check_gradient("cpy f32", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); | |
} | |
} | |
// cpy f16 | |
{ | |
srand(seed); | |
const int nargs = 2; | |
for (int ndims = 1; ndims <= 2; ++ndims) { | |
for (int i = 0; i < nargs; ++i) { | |
x[i] = get_random_tensor_f16(ctx0, ndims, ne, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[i]); | |
} | |
// x[1] is overwritten by x[0], so the gradients don't propagate to x[1] | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_cpy(ctx0, x[0], x[1])); | |
check_gradient("cpy f16", ctx0, x, f, ndims, nargs, 1e-1f, 1e-1f, INFINITY, {}); | |
} | |
} | |
// reshape (1d->nd) | |
{ | |
srand(seed); | |
const int nargs = 1; | |
for (int ndims = 1; ndims <= 2; ++ndims) { | |
int64_t ne2[4]; | |
ne2[0] = 1; | |
ne2[1] = 1; | |
ne2[2] = 1; | |
ne2[3] = 1; | |
for (int i = 0; i < ndims; ++i) { | |
ne2[0] *= ne[i]; | |
} | |
x[0] = get_random_tensor_f32(ctx0, 1, ne2, -1.0f, 1.0f); | |
x[1] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[0]); | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_reshape(ctx0, x[0], x[1])); | |
check_gradient("reshape", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); | |
} | |
} | |
// reshape (nd->1d) | |
{ | |
srand(seed); | |
const int nargs = 1; | |
for (int ndims = 1; ndims <= 2; ++ndims) { | |
int64_t ne2[4]; | |
ne2[0] = 1; | |
ne2[1] = 1; | |
ne2[2] = 1; | |
ne2[3] = 1; | |
for (int i = 0; i < ndims; ++i) { | |
ne2[0] *= ne[i]; | |
} | |
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); | |
x[1] = get_random_tensor_f32(ctx0, 1, ne2, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[0]); | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_reshape(ctx0, x[0], x[1])); | |
check_gradient("reshape", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); | |
} | |
} | |
// acc 1d | |
{ | |
srand(seed); | |
int64_t ne2[4] = { 1, 1, 1, 1 }; | |
const int nargs = 2; | |
for (int ndims = 1; ndims <= 4; ++ndims) { | |
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[0]); | |
get_random_dims(ne2, 1); | |
while ((ne2[0] > ne[0]) || (ne2[0] > ggml_nelements(x[0]))) { | |
get_random_dims(ne2, 1); | |
} | |
x[1] = get_random_tensor_f32(ctx0, 1, ne2, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[1]); | |
const int max_offset = MAX(0, ggml_nelements(x[0]) - ggml_nelements(x[1])); | |
const int offset = irand(max_offset) * ggml_element_size(x[0]); | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_acc(ctx0, x[0], x[1], x[0]->nb[1], x[0]->nb[2], x[0]->nb[3], offset)); | |
check_gradient("acc 1d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); | |
} | |
} | |
// acc 2d | |
{ | |
srand(seed); | |
int64_t ne2[4] = { 1, 1, 1, 1 }; | |
int64_t max_offsets[4] = { 0, 0, 0, 0 }; | |
int64_t offsets[4] = { 0, 0, 0, 0 }; | |
const int nargs = 2; | |
for (int ndims = 2; ndims <= 4; ++ndims) { | |
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[0]); | |
get_random_dims(ne2, 2); | |
while ((ne2[0] > ne[0]) || (ne2[1] > ne[1]) || (ne2[0]*ne2[1] > ggml_nelements(x[0]))) { | |
get_random_dims(ne2, 2); | |
} | |
x[1] = get_random_tensor_f32(ctx0, 2, ne2, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[1]); | |
max_offsets[0] = MAX(0, x[0]->ne[0] - x[1]->ne[0]); | |
max_offsets[1] = MAX(0, x[0]->ne[1] - x[1]->ne[1]); | |
offsets[0] = irand(max_offsets[0]) * x[0]->nb[0]; | |
offsets[1] = irand(max_offsets[1]) * x[0]->nb[1]; | |
const int offset = offsets[0] + offsets[1]; | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_acc(ctx0, x[0], x[1], x[0]->nb[1], x[0]->nb[2], x[0]->nb[3], offset)); | |
check_gradient("acc 2d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); | |
} | |
} | |
// acc 3d | |
{ | |
srand(seed); | |
int64_t ne2[4] = { 1, 1, 1, 1 }; | |
int64_t max_offsets[4] = { 0, 0, 0, 0 }; | |
int64_t offsets[4] = { 0, 0, 0, 0 }; | |
const int nargs = 2; | |
for (int ndims = 3; ndims <= 4; ++ndims) { | |
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[0]); | |
get_random_dims(ne2, 3); | |
while ((ne2[0] > ne[0]) || (ne2[1] > ne[1]) || (ne2[2] > ne[2]) || (ne2[0]*ne2[1]*ne2[2] > ggml_nelements(x[0]))) { | |
get_random_dims(ne2, 3); | |
} | |
x[1] = get_random_tensor_f32(ctx0, 3, ne2, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[1]); | |
max_offsets[0] = MAX(0, x[0]->ne[0] - x[1]->ne[0]); | |
max_offsets[1] = MAX(0, x[0]->ne[1] - x[1]->ne[1]); | |
max_offsets[2] = MAX(0, x[0]->ne[2] - x[1]->ne[2]); | |
offsets[0] = irand(max_offsets[0]) * x[0]->nb[0]; | |
offsets[1] = irand(max_offsets[1]) * x[0]->nb[1]; | |
offsets[2] = irand(max_offsets[2]) * x[0]->nb[2]; | |
const int offset = offsets[0] + offsets[1] + offsets[2]; | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_acc(ctx0, x[0], x[1], x[0]->nb[1], x[0]->nb[2], x[0]->nb[3], offset)); | |
check_gradient("acc 3d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); | |
} | |
} | |
// acc 4d | |
{ | |
srand(seed); | |
int64_t ne2[4] = { 1, 1, 1, 1 }; | |
int64_t max_offsets[4] = { 0, 0, 0, 0 }; | |
int64_t offsets[4] = { 0, 0, 0, 0 }; | |
const int nargs = 2; | |
for (int ndims = 4; ndims <= 4; ++ndims) { | |
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[0]); | |
get_random_dims(ne2, 4); | |
while ((ne2[0] > ne[0]) || (ne2[1] > ne[1]) || (ne2[2] > ne[2]) || (ne2[3] > ne[3]) || (ne2[0]*ne2[1]*ne2[2]*ne2[3] > ggml_nelements(x[0]))) { | |
get_random_dims(ne2, 4); | |
} | |
x[1] = get_random_tensor_f32(ctx0, 4, ne2, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[1]); | |
max_offsets[0] = MAX(0, x[0]->ne[0] - x[1]->ne[0]); | |
max_offsets[1] = MAX(0, x[0]->ne[1] - x[1]->ne[1]); | |
max_offsets[2] = MAX(0, x[0]->ne[2] - x[1]->ne[2]); | |
max_offsets[3] = MAX(0, x[0]->ne[3] - x[1]->ne[3]); | |
offsets[0] = irand(max_offsets[0]) * x[0]->nb[0]; | |
offsets[1] = irand(max_offsets[1]) * x[0]->nb[1]; | |
offsets[2] = irand(max_offsets[2]) * x[0]->nb[2]; | |
offsets[3] = irand(max_offsets[3]) * x[0]->nb[3]; | |
const int offset = offsets[0] + offsets[1] + offsets[2] + offsets[3]; | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_acc(ctx0, x[0], x[1], x[0]->nb[1], x[0]->nb[2], x[0]->nb[3], offset)); | |
check_gradient("acc 4d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); | |
} | |
} | |
// set_1d | |
{ | |
srand(seed); | |
int64_t ne2[4]; | |
const int nargs = 2; | |
for (int ndims = 1; ndims <= 4; ++ndims) { | |
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[0]); | |
get_random_dims(ne2, 1); | |
while ((ne2[0] > ne[0]) || (ne2[0] > ggml_nelements(x[0]))) { | |
get_random_dims(ne2, 1); | |
} | |
x[1] = get_random_tensor_f32(ctx0, 1, ne2, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[1]); | |
const int max_offset = MAX(0, ggml_nelements(x[0]) - ggml_nelements(x[1])); | |
const int offset = irand(max_offset) * ggml_element_size(x[0]); | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_set_1d(ctx0, x[0], x[1], offset)); | |
check_gradient("set_1d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); | |
} | |
} | |
// set_2d | |
{ | |
srand(seed); | |
int64_t ne2[4]; | |
int64_t max_offsets[4] = { 0, 0, 0, 0 }; | |
int64_t offsets[4] = { 0, 0, 0, 0 }; | |
const int nargs = 1; | |
for (int ndims = 2; ndims <= 4; ++ndims) { | |
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[0]); | |
get_random_dims(ne2, 2); | |
while ((ne2[0] > ne[0]) || (ne2[1] > ne[1]) || (ne2[0]*ne2[1] > ggml_nelements(x[0]))) { | |
get_random_dims(ne2, 2); | |
} | |
x[1] = get_random_tensor_f32(ctx0, 2, ne2, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[1]); | |
max_offsets[0] = MAX(0, x[0]->ne[0] - x[1]->ne[0]); | |
max_offsets[1] = MAX(0, x[0]->ne[1] - x[1]->ne[1]); | |
offsets[0] = irand(max_offsets[0]) * x[0]->nb[0]; | |
offsets[1] = irand(max_offsets[1]) * x[0]->nb[1]; | |
const int offset = offsets[0] + offsets[1]; | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_set_2d(ctx0, x[0], x[1], x[1]->nb[1], offset)); | |
check_gradient("set_2d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); | |
} | |
} | |
// view_1d | |
{ | |
srand(seed); | |
const int nargs = 1; | |
for (int ndims = 1; ndims <= 4; ++ndims) { | |
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[0]); | |
const int k0 = irand(ggml_nelements(x[0])); | |
const int k1 = irand(ggml_nelements(x[0])); | |
const int i0 = MIN(k0, k1); | |
const int i1 = MAX(k0, k1); | |
const int offset = i0 * sizeof(float); | |
const int nelem = i1 - i0; | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_view_1d(ctx0, x[0], nelem, offset)); | |
check_gradient("view_1d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); | |
} | |
} | |
// view_2d | |
{ | |
srand(seed); | |
int64_t ne2[4]; | |
int64_t nb2[4]; | |
const int nargs = 1; | |
for (int ndims = 1; ndims <= 4; ++ndims) { | |
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); | |
get_random_dims(ne2, 2); | |
while (ne2[0]*ne2[1] > ggml_nelements(x[0])) { | |
get_random_dims(ne2, 2); | |
} | |
const int count = ne2[0]*ne2[1]; | |
nb2[0] = sizeof(float); | |
nb2[1] = nb2[0]*ne2[0]; | |
ggml_set_param(ctx0, x[0]); | |
const int max_offset = ggml_nelements(x[0]) - count; | |
const int offset = irand(max_offset+1) * sizeof(float); | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_view_2d(ctx0, x[0], ne2[0], ne2[1], nb2[1], offset)); | |
check_gradient("view_2d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); | |
} | |
} | |
// view_3d | |
{ | |
srand(seed); | |
int64_t ne2[4] = {1,1,1,1}; | |
int64_t nb2[4] = {0,0,0,0}; | |
const int nargs = 1; | |
for (int ndims = 1; ndims <= 4; ++ndims) { | |
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); | |
get_random_dims(ne2, 3); | |
while (ne2[0]*ne2[1]*ne2[2] > ggml_nelements(x[0])) { | |
get_random_dims(ne2, 3); | |
} | |
const int count = ne2[0]*ne2[1]*ne2[2]; | |
nb2[0] = sizeof(float); | |
nb2[1] = nb2[0]*ne2[0]; | |
nb2[2] = nb2[1]*ne2[1]; | |
ggml_set_param(ctx0, x[0]); | |
const int max_offset = ggml_nelements(x[0]) - count; | |
const int offset = irand(max_offset+1) * sizeof(float); | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_view_3d(ctx0, x[0], ne2[0], ne2[1], ne2[2], nb2[1], nb2[2], offset)); | |
check_gradient("view_3d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); | |
} | |
} | |
// permute | |
{ | |
srand(seed); | |
int64_t ne2[4]; | |
const int nargs = 1; | |
for (int ndims = 1; ndims <= 4; ++ndims) | |
{ | |
// ggml_permute will set axes of dimensions below n_dims to 1. | |
// to make ggml_permute work correctly on all axes, | |
// the input tensor needs maximal n_dim of 4. | |
for (int i=0; i<ndims; ++i) { | |
ne2[i] = ne[i]; | |
} | |
for (int i=ndims; i<4; ++i) { | |
ne2[i] = 1; | |
} | |
x[0] = get_random_tensor_f32(ctx0, 4, ne2, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[0]); | |
const int p = irand(NUM_PERMUTATIONS); | |
const int ax0 = all_permutations[p*4+0]; | |
const int ax1 = all_permutations[p*4+1]; | |
const int ax2 = all_permutations[p*4+2]; | |
const int ax3 = all_permutations[p*4+3]; | |
// sum requires contiguous tensor rows | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_cont(ctx0, ggml_permute(ctx0, x[0], ax0, ax1, ax2, ax3))); | |
check_gradient("permute", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); | |
} | |
} | |
// transpose | |
{ | |
srand(seed); | |
int64_t ne2[4]; | |
const int nargs = 1; | |
for (int ndims = 1; ndims <= 4; ++ndims) | |
{ | |
// ggml_transpose will set axes of dimensions below n_dims to 1. | |
// to make ggml_transpose work correctly on all axes, | |
// the input tensor needs maximal n_dim of 4. | |
for (int i=0; i<ndims; ++i) { | |
ne2[i] = ne[i]; | |
} | |
for (int i=ndims; i<4; ++i) { | |
ne2[i] = 1; | |
} | |
x[0] = get_random_tensor_f32(ctx0, 4, ne2, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[0]); | |
// sum requires contiguous tensor rows | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, x[0]))); | |
check_gradient("transpose", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); | |
} | |
} | |
// get_rows | |
{ | |
srand(seed); | |
int64_t ne2[4] = {ne[0], ne[1], 1, 1}; | |
int64_t ne3[4] = {1+irand(ne[1]), 1, 1, 1}; | |
const int nargs = 1; | |
const int ndims = 2; | |
x[0] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f); | |
x[1] = get_random_tensor_i32(ctx0, 1, ne3, 0, ne2[1]); | |
ggml_set_param(ctx0, x[0]); | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_get_rows(ctx0, x[0], x[1])); | |
check_gradient("get_rows", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); | |
} | |
// diag_mask_inf | |
{ | |
srand(seed); | |
const int nargs = 1; | |
const int ndims = 2; | |
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[0]); | |
int n_past = irand(ne[0]); | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_diag_mask_inf(ctx0, x[0], n_past)); | |
check_gradient("diag_mask_inf", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); | |
} | |
// diag_mask_zero | |
{ | |
srand(seed); | |
const int nargs = 1; | |
const int ndims = 2; | |
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[0]); | |
int n_past = irand(ne[0]); | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_diag_mask_zero(ctx0, x[0], n_past)); | |
check_gradient("diag_mask_zero", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); | |
} | |
// softmax | |
{ | |
srand(seed); | |
const int nargs = 1; | |
int64_t ne2[4]; | |
get_random_dims(ne2, 4); | |
for (int ndims = 1; ndims <= 3; ++ndims) { | |
x[0] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[0]); | |
float eps = 1e-6f; | |
// dont use only sum as aggregation, because sum of softmax is always 1 -> finite differences should not work | |
// instead use sum(log(soft_max()*(1-eps)+eps)); use eps to avoid log(0) | |
struct ggml_tensor * f = ggml_sum(ctx0, | |
ggml_log(ctx0, | |
ggml_add1(ctx0, | |
ggml_scale(ctx0, | |
ggml_soft_max(ctx0, x[0]), | |
1.0f - eps), | |
ggml_new_f32(ctx0, eps)))); | |
check_gradient("softmax", ctx0, x, f, ndims, nargs, 1e-3f, 2e-1f, INFINITY, {}); | |
// NOTE: softmax forward is computed using f16 table lookup instead of using actual expf, but backward assumes actual expf. | |
// this may result in different gradients too finite differences. | |
// when this test reports errors, first try to replace the table lookup with actual expf and test again to see if just that was the cause. | |
// if only the table lookup causes gradients to differ this is acceptable. | |
} | |
} | |
// cross_entropy_loss | |
{ | |
srand(seed); | |
const int nargs = 1; | |
int64_t ne2[4]; | |
get_random_dims(ne2, 4); | |
for (int ndims = 1; ndims <= 4; ++ndims) { | |
x[0] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f); | |
x[1] = get_random_tensor_f32(ctx0, ndims, ne2, 0.0f, 1.0f); | |
// the second argument to cross_entropy_loss must sum up to 1 for each row | |
int nr = ggml_nrows(x[1]); | |
int nc = ggml_nelements(x[1]) / nr; | |
for (int ir = 0; ir < nr; ++ir) { | |
float sum = 0; | |
for (int ic = 0; ic < nc; ++ic) { | |
sum += ((float *) x[1]->data)[ic + ir*nc]; | |
} | |
for (int ic = 0; ic < nc; ++ic) { | |
((float *) x[1]->data)[ic + ir*nc] /= sum; | |
} | |
} | |
ggml_set_param(ctx0, x[0]); | |
struct ggml_tensor * f = ggml_cross_entropy_loss(ctx0, x[0], x[1]); | |
check_gradient("cross_entropy_loss", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {}); | |
} | |
} | |
// rope f32 | |
{ | |
srand(seed); | |
const int nargs = 1; | |
int64_t ne2[4]; | |
get_random_dims(ne2, 4); | |
ne2[0] += ne2[0] % 2; | |
int n_rot = ne2[0]; | |
for (int ndims = 3; ndims <= 4; ++ndims) { | |
for (int mode = 0; mode < 4; ++mode) { | |
for (int n_past = 1; n_past < ne2[2]; ++n_past) { | |
x[0] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f); | |
struct ggml_tensor * p = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne2[2]); | |
for (int i = 0; i < ne2[2]; ++i) { | |
((int32_t *) p->data)[i] = n_past + i; | |
} | |
ggml_set_param(ctx0, x[0]); | |
const bool skip_past = (mode & 1); | |
if (skip_past) { | |
// we have no past, so this would have to work on uninitialized memory. | |
// we only test the gradients here; | |
// skip_past should have no influence on gradient computation. | |
// so when other modes work, we assume that this does as well. | |
continue; | |
} | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_rope(ctx0, x[0], p, n_rot, mode)); | |
GGML_PRINT_DEBUG("rope f32: n_past: %d n_rot: %d mode: %d\n", n_past, n_rot, mode); | |
check_gradient("rope f32", ctx0, x, f, ndims, nargs, 1e-2f, 1e-3f, INFINITY, {}); | |
} | |
} | |
} | |
} | |
// rope f16 | |
{ | |
srand(seed); | |
const int nargs = 1; | |
int64_t ne2[4]; | |
get_random_dims(ne2, 4); | |
ne2[0] += ne2[0] % 2; | |
int n_rot = ne2[0]; | |
for (int ndims = 3; ndims <= 4; ++ndims) { | |
for (int mode = 0; mode < 4; ++mode) { | |
for (int n_past = 1; n_past < ne2[2]; ++n_past) { | |
x[0] = get_random_tensor_f16(ctx0, ndims, ne2, -1.0f, 1.0f); | |
struct ggml_tensor * p = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne2[2]); | |
for (int i = 0; i < ne2[2]; ++i) { | |
((int32_t *) p->data)[i] = n_past + i; | |
} | |
ggml_set_param(ctx0, x[0]); | |
const bool skip_past = (mode & 1); | |
if (skip_past) { | |
// we have no past, so this would have to work on uninitialized memory. | |
// we only test the gradients here; | |
// skip_past should have no influence on gradient computation. | |
// so when other modes work, we assume that this does as well. | |
continue; | |
} | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_rope(ctx0, x[0], p, n_rot, mode)); | |
GGML_PRINT_DEBUG("rope f16: n_past: %d n_rot: %d mode: %d\n", n_past, n_rot, mode); | |
check_gradient("rope f16", ctx0, x, f, ndims, nargs, 1e-1f, 1e-1f, INFINITY, {}); | |
} | |
} | |
} | |
} | |
// im2col f32 | |
{ | |
srand(seed); | |
const int nargs = 1; | |
const int ndims = 4; | |
for (const bool is_2D : {false, true}) { | |
int64_t ne0[ndims]; | |
int64_t ne1[ndims]; | |
get_random_dims(ne0, ndims); | |
get_random_dims(ne1, ndims); | |
// // Ensure that the output is not zero-sized: | |
ne1[0] += 8; | |
ne1[1] += 8; | |
if (is_2D) { | |
ne1[2] = ne0[2]; | |
} else { | |
ne1[1] = ne0[1]; | |
ne0[3] = 1; | |
ne1[3] = 1; | |
} | |
// The order of arguments is swapped because the first tensor is only used for its shape. | |
x[1] = get_random_tensor_f16(ctx0, ndims, ne0, -1.0f, 1.0f); | |
x[0] = get_random_tensor_f32(ctx0, ndims, ne1, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[0]); | |
const int s0 = 1 + irand(2); | |
const int s1 = is_2D ? 1 + irand(2) : 0; | |
const int p0 = 0 + irand(2); | |
const int p1 = is_2D ? 0 + irand(2) : 0; | |
const int d0 = 1 + irand(2); | |
const int d1 = is_2D ? 1 + irand(2) : 0; | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_im2col(ctx0, x[1], x[0], s0, s1, p0, p1, d0, d1, is_2D, GGML_TYPE_F32)); | |
GGML_PRINT_DEBUG("im2col f32: is_2D=%s, s0=%d, s1=%d, p0=%d, p1=%d, d0=%d, d1=%d\n", is_2D ? "yes" : "no", s0, s1, p0, p1, d0, d1); | |
check_gradient("im2col f32", ctx0, x, f, ndims, nargs, 1e-2f, 1e-3f, INFINITY, {}); | |
} | |
} | |
// pool_2d f32 | |
{ | |
srand(seed); | |
const int nargs = 1; | |
const int ndims = 4; | |
for (const enum ggml_op_pool op : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) { | |
int64_t ne0[ndims]; | |
get_random_dims(ne0, ndims); | |
ne0[0] += 8; | |
ne0[1] += 8; | |
x[0] = get_random_tensor_f32(ctx0, ndims, ne0, -1.0f, 1.0f); | |
ggml_set_param(ctx0, x[0]); | |
const int k0 = 2 + irand(2); | |
const int k1 = 2 + irand(2); | |
const int s0 = 2 + irand(2); | |
const int s1 = 2 + irand(2); | |
const int p0 = 0 + irand(2); | |
const int p1 = 0 + irand(2); | |
struct ggml_tensor * f = ggml_sum(ctx0, ggml_pool_2d(ctx0, x[0], op, k0, k1, s0, s1, p0, p1)); | |
GGML_PRINT_DEBUG("ggml_pool_2d f32: op=%s k0=%d, k1=%d, s0=%d, s1=%d, p0=%d, p1=%d\n", | |
op == GGML_OP_POOL_MAX ? "max" : "avg", k0, k1, s0, s1, p0, p1); | |
std::vector<double> expected_vals; | |
if (op == GGML_OP_POOL_MAX) { | |
expected_vals.push_back(0.0); | |
expected_vals.push_back(1.0); | |
} | |
check_gradient("ggml_pool_2d f32", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, expected_vals); | |
} | |
} | |
// flash_attn f32 | |
// TODO: adapt to ggml_flash_attn_ext() changes | |
//{ | |
// srand(seed); | |
// const int nargs = 3; | |
// int64_t ne2[4]; | |
// get_random_dims(ne2, 4); | |
// int64_t D = ne2[0]; | |
// int64_t N = ne2[1]; | |
// int64_t M = ne2[2] + N; | |
// int64_t B = ne2[3]; | |
// for (int masked = 0; masked <= 1; ++masked) { | |
// for (int ndims = 2; ndims <= 4; ++ndims) { | |
// int max_nrep = (ndims >= 3) ? 2 : 1; | |
// for (int nrep = 1; nrep < max_nrep; ++nrep) { | |
// int64_t neq[4] = { D, N, B*nrep, ne[3] }; | |
// int64_t nek[4] = { D, M, B, ne[3] }; | |
// int64_t nev[4] = { M, D, B, ne[3] }; | |
// if (ndims == 2) { | |
// neq[2] = 1; neq[3] = 1; | |
// nek[2] = 1; nek[3] = 1; | |
// nev[2] = 1; nev[3] = 1; | |
// } else if (ndims == 3) { | |
// neq[3] = 1; | |
// nek[3] = 1; | |
// nev[3] = 1; | |
// } | |
// x[0] = get_random_tensor_f32(ctx0, ndims, neq, -0.1250f, 0.1250f); | |
// x[1] = get_random_tensor_f32(ctx0, ndims, nek, -0.1250f, 0.1250f); | |
// x[2] = get_random_tensor_f32(ctx0, ndims, nev, -0.1250f, 0.1250f); | |
// ggml_set_param(ctx0, x[0]); | |
// ggml_set_param(ctx0, x[1]); | |
// ggml_set_param(ctx0, x[2]); | |
// struct ggml_tensor * f = ggml_sum(ctx0, ggml_flash_attn(ctx0, x[0], x[1], x[2], (masked == 0))); | |
// check_gradient("flash_attn f32", ctx0, x, f, ndims, nargs, 1.5e-4f, 1e-3f, INFINITY, {}); | |
// } | |
// } | |
// } | |
//} | |
ggml_free(ctx0); | |
} | |
return 0; | |
} | |