#include "kernel_operator.h" // optimize me. Use template to avoid copy code. using namespace AscendC; #define BUFFER_NUM 2 #define QK8_0 32 class GET_ROW_Q8_0 { public: __aicore__ inline GET_ROW_Q8_0() {} __aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output, int64_t *input_ne_ub, int64_t *indices_ne_ub, size_t *indices_nb_ub, int64_t *output_ne_ub, size_t *output_nb_ub) { int64_t op_block_num = GetBlockNum(); int64_t op_block_idx = GetBlockIdx(); for (int i = 0; i < 4; i++) { input_ne[i] = input_ne_ub[i]; indices_ne[i] = indices_ne_ub[i]; indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0]; scale_ne[i] = input_ne_ub[i]; output_ne[i] = output_ne_ub[i]; output_stride[i] = output_nb_ub[i] / output_nb_ub[0]; } // one scale for a group. scale_ne[0] /= QK8_0; input_stride[0] = 1; scale_stride[0] = 1; output_stride[0] = 1; for (int i = 1; i < 4; i++) { input_stride[i] = input_stride[i - 1] * input_ne[i - 1]; scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1]; } group_size_in_row = input_ne[0] / QK8_0; int64_t scale_offset = input_ne[0] * input_ne[1] * input_ne[2] * input_ne[3] * sizeof(int8_t); // Indices has two dims. n_elements = all rows should get. // dr, all rows should this thread get. uint64_t n_elements = indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3]; dr = n_elements / op_block_num; uint64_t tails = n_elements % op_block_num; if (op_block_idx < tails) { dr += 1; ir = dr * op_block_idx; } else { ir = dr * op_block_idx + tails; } input_gm.SetGlobalBuffer((__gm__ int8_t *)input); scale_gm.SetGlobalBuffer((__gm__ half *)(input + scale_offset)); indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices); output_gm.SetGlobalBuffer((__gm__ float *)output); pipe.InitBuffer(input_queue, BUFFER_NUM, QK8_0 * sizeof(int8_t)); pipe.InitBuffer(cast_queue, BUFFER_NUM, QK8_0 * sizeof(half)); pipe.InitBuffer(output_queue, BUFFER_NUM, QK8_0 * sizeof(float)); } __aicore__ inline void copy_in(uint32_t offset) { LocalTensor input_local = input_queue.AllocTensor(); DataCopy(input_local, input_gm[offset], QK8_0); input_queue.EnQue(input_local); } __aicore__ inline void copy_out(uint32_t offset) { LocalTensor output_local = output_queue.DeQue(); DataCopy(output_gm[offset], output_local, QK8_0); output_queue.FreeTensor(output_local); } __aicore__ inline void calculate_group(int64_t idx, int64_t group) { const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]); const int64_t indices_ne1_idx = (idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) / indices_ne[0]; const int64_t indices_ne0_idx = (idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] - indices_ne1_idx * indices_ne[0]); const int64_t indices_offset = indices_ne0_idx * indices_stride[0] + indices_ne1_idx * indices_stride[1] + indices_ne2_idx * indices_stride[2]; const int32_t selected_row_idx = indices_gm.GetValue(indices_offset); const int64_t input_offset = selected_row_idx * input_stride[1] + indices_ne1_idx * input_stride[2] + indices_ne2_idx * input_stride[3] + group * QK8_0; const int64_t scale_offset = selected_row_idx * scale_stride[1] + indices_ne1_idx * scale_stride[2] + indices_ne2_idx * scale_stride[3] + group; const int64_t output_offset = indices_ne0_idx * output_stride[1] + indices_ne1_idx * output_stride[2] + indices_ne2_idx * output_stride[3] + group * QK8_0; copy_in(input_offset); LocalTensor input_local = input_queue.DeQue(); LocalTensor cast_local = cast_queue.AllocTensor(); LocalTensor output_local = output_queue.AllocTensor(); // TODO: cast more data to speed up. Cast(cast_local, input_local, RoundMode::CAST_NONE, QK8_0); Cast(output_local, cast_local, RoundMode::CAST_NONE, QK8_0); // Only mul need compile by group. half scale = scale_gm.GetValue(scale_offset); Muls(output_local, output_local, (float)scale, QK8_0); input_queue.FreeTensor(input_local); cast_queue.FreeTensor(cast_local); output_queue.EnQue(output_local); copy_out(output_offset); } __aicore__ inline void calculate() { for (int64_t i = ir; i < ir + dr; i++) { for (int64_t j = 0; j < group_size_in_row; j++) { calculate_group(i, j); } } } private: int64_t input_ne[4]; size_t input_stride[4]; int64_t scale_ne[4]; size_t scale_stride[4]; int64_t indices_ne[4]; size_t indices_stride[4]; int64_t output_ne[4]; size_t output_stride[4]; int64_t ir; int64_t dr; int64_t group_size_in_row; TPipe pipe; GlobalTensor input_gm; GlobalTensor scale_gm; GlobalTensor indices_gm; GlobalTensor output_gm; TQue input_queue; TQue output_queue; TQue cast_queue; }; template __aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) { auto gm_ptr = (__gm__ uint8_t *)gm; auto ub_ptr = (uint8_t *)(ub); for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) { *ub_ptr = *gm_ptr; } } extern "C" __global__ __aicore__ void ascendc_get_row_q8_0( GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm, GM_ADDR indices_ne_gm, GM_ADDR indices_nb_gm, GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) { int64_t input_ne_ub[4]; int64_t indices_ne_ub[4]; size_t indices_nb_ub[4]; int64_t output_ne_ub[4]; size_t output_nb_ub[4]; copy_to_ub(input_ne_gm, input_ne_ub, 32); copy_to_ub(indices_ne_gm, indices_ne_ub, 32); copy_to_ub(indices_nb_gm, indices_nb_ub, 32); copy_to_ub(output_ne_gm, output_ne_ub, 32); copy_to_ub(output_nb_gm, output_nb_ub, 32); GET_ROW_Q8_0 op; op.init(input_gm, indices_gm, output_gm, input_ne_ub, indices_ne_ub, indices_nb_ub, output_ne_ub, output_nb_ub); op.calculate(); }