Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,16 @@
|
|
1 |
import streamlit as st
|
2 |
from dotenv import load_dotenv
|
3 |
-
from
|
4 |
-
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
|
5 |
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
|
6 |
-
from langchain.vectorstores import FAISS
|
7 |
-
from langchain.embeddings import HuggingFaceEmbeddings # General embeddings from HuggingFace models.
|
8 |
from langchain.chat_models import ChatOpenAI
|
9 |
from langchain.memory import ConversationBufferMemory
|
10 |
from langchain.chains import ConversationalRetrievalChain
|
11 |
-
from htmlTemplates import css, bot_template, user_template
|
12 |
-
from langchain.llms import HuggingFaceHub, LlamaCpp, CTransformers # For loading transformer models.
|
13 |
from langchain.document_loaders import PyPDFLoader, TextLoader, JSONLoader, CSVLoader
|
14 |
-
import tempfile
|
15 |
import os
|
16 |
|
17 |
|
18 |
-
# PDF 문서로부터 텍스트를 추출하는 함수입니다.
|
19 |
def get_pdf_text(pdf_docs):
|
20 |
temp_dir = tempfile.TemporaryDirectory()
|
21 |
temp_filepath = os.path.join(temp_dir.name, pdf_docs.name)
|
@@ -23,72 +18,50 @@ def get_pdf_text(pdf_docs):
|
|
23 |
f.write(pdf_docs.getvalue())
|
24 |
pdf_loader = PyPDFLoader(temp_filepath)
|
25 |
pdf_doc = pdf_loader.load()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
text_list = [] # 각 페이지의 텍스트를 저장할 리스트
|
28 |
-
|
29 |
-
for page_num in range(len(pdf_doc)):
|
30 |
-
text_list.append(pdf_doc.get_page_text(page_num))
|
31 |
-
|
32 |
-
return text_list
|
33 |
-
|
34 |
-
# 과제
|
35 |
-
# 아래 텍스트 추출 함수를 작성
|
36 |
-
|
37 |
-
def get_text_file(text_docs):
|
38 |
-
text_content = text_docs.getvalue().decode("utf-8")
|
39 |
-
return [text_content]
|
40 |
-
|
41 |
-
def get_csv_file(csv_docs):
|
42 |
-
csv_content = csv_docs.getvalue().decode("utf-8")
|
43 |
-
csv_data = pd.read_csv(pd.compat.StringIO(csv_content))
|
44 |
-
text_list = []
|
45 |
-
for column in csv_data.columns:
|
46 |
-
text_list.extend(csv_data[column].astype(str).tolist())
|
47 |
-
return text_list
|
48 |
-
|
49 |
-
def get_json_file(json_docs):
|
50 |
-
json_content = json_docs.getvalue().decode("utf-8")
|
51 |
-
json_data = json.loads(json_content)
|
52 |
-
text_list = []
|
53 |
-
for key, value in json_data.items():
|
54 |
-
if isinstance(value, str):
|
55 |
-
text_list.append(value)
|
56 |
-
elif isinstance(value, list):
|
57 |
-
text_list.extend(value)
|
58 |
-
elif isinstance(value, dict):
|
59 |
-
text_list.extend(value.values())
|
60 |
-
return text_list
|
61 |
-
|
62 |
-
# 문서들을 처리하여 텍스트 청크로 나누는 함수입니다.
|
63 |
def get_text_chunks(documents):
|
64 |
text_splitter = RecursiveCharacterTextSplitter(
|
65 |
-
chunk_size=1000,
|
66 |
-
chunk_overlap=200,
|
67 |
-
length_function=len
|
68 |
)
|
69 |
|
70 |
-
documents = text_splitter.split_documents(documents)
|
71 |
-
return documents
|
72 |
|
73 |
|
74 |
-
# 텍스트 청크들로부터 벡터 스토어를 생성하는 함수입니다.
|
75 |
def get_vectorstore(text_chunks):
|
76 |
-
# OpenAI 임베딩 모델을 로드합니다. (Embedding models - Ada v2)
|
77 |
-
|
78 |
embeddings = OpenAIEmbeddings()
|
79 |
-
vectorstore = FAISS.from_documents(text_chunks, embeddings)
|
80 |
-
|
81 |
-
return vectorstore # 생성된 벡터 스토어를 반환합니다.
|
82 |
|
83 |
|
84 |
def get_conversation_chain(vectorstore):
|
85 |
gpt_model_name = 'gpt-3.5-turbo'
|
86 |
-
llm = ChatOpenAI(model_name
|
87 |
-
|
88 |
-
# 대화 기록을 저장하기 위한 메모리를 생성합니다.
|
89 |
memory = ConversationBufferMemory(
|
90 |
memory_key='chat_history', return_messages=True)
|
91 |
-
# 대화 검색 체인을 생성합니다.
|
92 |
conversation_chain = ConversationalRetrievalChain.from_llm(
|
93 |
llm=llm,
|
94 |
retriever=vectorstore.as_retriever(),
|
@@ -96,11 +69,9 @@ def get_conversation_chain(vectorstore):
|
|
96 |
)
|
97 |
return conversation_chain
|
98 |
|
99 |
-
|
100 |
def handle_userinput(user_question):
|
101 |
-
# 대화 체인을 사용하여 사용자 질문에 대한 응답을 생성합니다.
|
102 |
response = st.session_state.conversation({'question': user_question})
|
103 |
-
# 대화 기록을 저장합니다.
|
104 |
st.session_state.chat_history = response['chat_history']
|
105 |
|
106 |
for i, message in enumerate(st.session_state.chat_history):
|
@@ -135,34 +106,23 @@ def main():
|
|
135 |
|
136 |
st.subheader("Your documents")
|
137 |
docs = st.file_uploader(
|
138 |
-
"Upload your
|
139 |
if st.button("Process"):
|
140 |
with st.spinner("Processing"):
|
141 |
-
# get pdf text
|
142 |
doc_list = []
|
143 |
|
144 |
for file in docs:
|
145 |
-
print('file - type : ', file.type)
|
146 |
if file.type == 'text/plain':
|
147 |
-
# file is .txt
|
148 |
doc_list.extend(get_text_file(file))
|
149 |
elif file.type in ['application/octet-stream', 'application/pdf']:
|
150 |
-
# file is .pdf
|
151 |
doc_list.extend(get_pdf_text(file))
|
152 |
elif file.type == 'text/csv':
|
153 |
-
# file is .csv
|
154 |
doc_list.extend(get_csv_file(file))
|
155 |
elif file.type == 'application/json':
|
156 |
-
# file is .json
|
157 |
doc_list.extend(get_json_file(file))
|
158 |
|
159 |
-
# get the text chunks
|
160 |
text_chunks = get_text_chunks(doc_list)
|
161 |
-
|
162 |
-
# create vector store
|
163 |
vectorstore = get_vectorstore(text_chunks)
|
164 |
-
|
165 |
-
# create conversation chain
|
166 |
st.session_state.conversation = get_conversation_chain(
|
167 |
vectorstore)
|
168 |
|
|
|
1 |
import streamlit as st
|
2 |
from dotenv import load_dotenv
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
4 |
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
|
5 |
+
from langchain.vectorstores import FAISS
|
|
|
6 |
from langchain.chat_models import ChatOpenAI
|
7 |
from langchain.memory import ConversationBufferMemory
|
8 |
from langchain.chains import ConversationalRetrievalChain
|
|
|
|
|
9 |
from langchain.document_loaders import PyPDFLoader, TextLoader, JSONLoader, CSVLoader
|
10 |
+
import tempfile
|
11 |
import os
|
12 |
|
13 |
|
|
|
14 |
def get_pdf_text(pdf_docs):
|
15 |
temp_dir = tempfile.TemporaryDirectory()
|
16 |
temp_filepath = os.path.join(temp_dir.name, pdf_docs.name)
|
|
|
18 |
f.write(pdf_docs.getvalue())
|
19 |
pdf_loader = PyPDFLoader(temp_filepath)
|
20 |
pdf_doc = pdf_loader.load()
|
21 |
+
return pdf_doc
|
22 |
+
|
23 |
+
|
24 |
+
def get_text_file(docs):
|
25 |
+
text_loader = TextLoader(docs.name)
|
26 |
+
text = text_loader.load()
|
27 |
+
return [text]
|
28 |
+
|
29 |
+
|
30 |
+
def get_csv_file(docs):
|
31 |
+
csv_loader = CSVLoader(docs.name)
|
32 |
+
csv_text = csv_loader.load()
|
33 |
+
return csv_text.values.tolist()
|
34 |
+
|
35 |
+
|
36 |
+
def get_json_file(docs):
|
37 |
+
json_loader = JSONLoader(docs.name)
|
38 |
+
json_text = json_loader.load()
|
39 |
+
return [json_text]
|
40 |
+
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
def get_text_chunks(documents):
|
43 |
text_splitter = RecursiveCharacterTextSplitter(
|
44 |
+
chunk_size=1000,
|
45 |
+
chunk_overlap=200,
|
46 |
+
length_function=len
|
47 |
)
|
48 |
|
49 |
+
documents = text_splitter.split_documents(documents)
|
50 |
+
return documents
|
51 |
|
52 |
|
|
|
53 |
def get_vectorstore(text_chunks):
|
|
|
|
|
54 |
embeddings = OpenAIEmbeddings()
|
55 |
+
vectorstore = FAISS.from_documents(text_chunks, embeddings)
|
56 |
+
return vectorstore
|
|
|
57 |
|
58 |
|
59 |
def get_conversation_chain(vectorstore):
|
60 |
gpt_model_name = 'gpt-3.5-turbo'
|
61 |
+
llm = ChatOpenAI(model_name=gpt_model_name)
|
62 |
+
|
|
|
63 |
memory = ConversationBufferMemory(
|
64 |
memory_key='chat_history', return_messages=True)
|
|
|
65 |
conversation_chain = ConversationalRetrievalChain.from_llm(
|
66 |
llm=llm,
|
67 |
retriever=vectorstore.as_retriever(),
|
|
|
69 |
)
|
70 |
return conversation_chain
|
71 |
|
72 |
+
|
73 |
def handle_userinput(user_question):
|
|
|
74 |
response = st.session_state.conversation({'question': user_question})
|
|
|
75 |
st.session_state.chat_history = response['chat_history']
|
76 |
|
77 |
for i, message in enumerate(st.session_state.chat_history):
|
|
|
106 |
|
107 |
st.subheader("Your documents")
|
108 |
docs = st.file_uploader(
|
109 |
+
"Upload your files here and click on 'Process'", accept_multiple_files=True)
|
110 |
if st.button("Process"):
|
111 |
with st.spinner("Processing"):
|
|
|
112 |
doc_list = []
|
113 |
|
114 |
for file in docs:
|
|
|
115 |
if file.type == 'text/plain':
|
|
|
116 |
doc_list.extend(get_text_file(file))
|
117 |
elif file.type in ['application/octet-stream', 'application/pdf']:
|
|
|
118 |
doc_list.extend(get_pdf_text(file))
|
119 |
elif file.type == 'text/csv':
|
|
|
120 |
doc_list.extend(get_csv_file(file))
|
121 |
elif file.type == 'application/json':
|
|
|
122 |
doc_list.extend(get_json_file(file))
|
123 |
|
|
|
124 |
text_chunks = get_text_chunks(doc_list)
|
|
|
|
|
125 |
vectorstore = get_vectorstore(text_chunks)
|
|
|
|
|
126 |
st.session_state.conversation = get_conversation_chain(
|
127 |
vectorstore)
|
128 |
|