import streamlit as st from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import FAISS from langchain.chat_models import ChatOpenAI from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from langchain.document_loaders import PyPDFLoader import tempfile import os # PDF 문서로부터 텍스트를 추출하는 함수입니다. def get_pdf_text(pdf_docs): temp_dir = tempfile.TemporaryDirectory() temp_filepath = os.path.join(temp_dir.name, pdf_docs.name) with open(temp_filepath, "wb") as f: f.write(pdf_docs.getvalue()) pdf_loader = PyPDFLoader(temp_filepath) pdf_doc = pdf_loader.load() return pdf_doc # 텍스트 파일을 처리하는 함수입니다. def get_text_file(docs): text = docs.getvalue().decode("utf-8") return [text] # CSV 파일을 처리하는 함수입니다. def get_csv_file(docs): import pandas as pd csv_text = docs.getvalue().decode("utf-8") csv_data = pd.read_csv(pd.compat.StringIO(csv_text)) csv_columns = csv_data.columns.tolist() csv_rows = csv_data.to_dict(orient='records') csv_texts = [', '.join([f"{col}: {row[col]}" for col in csv_columns]) for row in csv_rows] return csv_texts # JSON 파일을 처리하는 함수입니다. def get_json_file(docs): import json json_text = docs.getvalue().decode("utf-8") json_data = json.loads(json_text) json_texts = [item.get('text', '') for item in json_data] return json_texts # 문서들을 처리하여 텍스트 청크로 나누는 함수입니다. def get_text_chunks(documents): text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=200, length_function=len ) return text_splitter.split_documents(documents) # 텍스트 청크들로부터 벡터 스토어를 생성하는 함수입니다. def get_vectorstore(text_chunks): embeddings = OpenAIEmbeddings() vectorstore = FAISS.from_documents(text_chunks, embeddings) return vectorstore # 대화 체인을 생성하는 함수입니다. def get_conversation_chain(vectorstore): gpt_model_name = 'gpt-3.5-turbo' llm = ChatOpenAI(model_name=gpt_model_name) memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True) conversation_chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=vectorstore.as_retriever(), memory=memory ) return conversation_chain # 사용자 입력을 처리하는 함수입니다. def handle_userinput(user_question): response = st.session_state.conversation({'question': user_question}) st.session_state.chat_history = response['chat_history'] for i, message in enumerate(st.session_state.chat_history): if i % 2 == 0: st.write(f"
{message.content}
", unsafe_allow_html=True) else: st.write(f"
{message.content}
", unsafe_allow_html=True) def main(): st.set_page_config(page_title="Chat with multiple Files", page_icon=":books:") if "conversation" not in st.session_state: st.session_state.conversation = None if "chat_history" not in st.session_state: st.session_state.chat_history = None st.header("Chat with multiple Files :") user_question = st.text_input("Ask a question about your documents:") with st.sidebar: st.subheader("Your documents") docs = st.file_uploader( "Upload your files here and click on 'Process'", accept_multiple_files=True ) if st.button("Process"): with st.spinner("Processing"): doc_list = [] for file in docs: if file.type == 'text/plain': doc_list.extend(get_text_file(file)) elif file.type == 'application/pdf': doc_list.extend(get_pdf_text(file)) elif file.type == 'text/csv': doc_list.extend(get_csv_file(file)) elif file.type == 'application/json': doc_list.extend(get_json_file(file)) text_chunks = get_text_chunks(doc_list) vectorstore = get_vectorstore(text_chunks) st.session_state.conversation = get_conversation_chain(vectorstore) if user_question and st.session_state.conversation: # 대화 체인이 있을 때만 사용자 입력 처리 handle_userinput(user_question) if __name__ == '__main__': main()