import streamlit as st from dotenv import load_dotenv from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import FAISS from langchain.chat_models import ChatOpenAI from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from langchain.document_loaders import PyPDFLoader, TextLoader, JSONLoader, CSVLoader import tempfile import os css = """ """ def get_pdf_text(pdf_docs): temp_dir = tempfile.TemporaryDirectory() temp_filepath = os.path.join(temp_dir.name, pdf_docs.name) with open(temp_filepath, "wb") as f: f.write(pdf_docs.getvalue()) pdf_loader = PyPDFLoader(temp_filepath) pdf_doc = pdf_loader.load() return pdf_doc def get_text_file(docs): text_loader = TextLoader(docs.name) text = text_loader.load() return [text] def get_csv_file(docs): csv_loader = CSVLoader(docs.name) csv_text = csv_loader.load() return csv_text.values.tolist() def get_json_file(docs): json_loader = JSONLoader(docs.name) json_text = json_loader.load() return [json_text] def get_text_chunks(documents): text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=200, length_function=len ) documents = text_splitter.split_documents(documents) return documents def get_vectorstore(text_chunks): embeddings = OpenAIEmbeddings() vectorstore = FAISS.from_documents(text_chunks, embeddings) return vectorstore def get_conversation_chain(vectorstore): gpt_model_name = 'gpt-3.5-turbo' llm = ChatOpenAI(model_name=gpt_model_name) memory = ConversationBufferMemory( memory_key='chat_history', return_messages=True) conversation_chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=vectorstore.as_retriever(), memory=memory ) return conversation_chain def handle_userinput(user_question): response = st.session_state.conversation({'question': user_question}) st.session_state.chat_history = response['chat_history'] for i, message in enumerate(st.session_state.chat_history): if i % 2 == 0: st.write(user_template.replace( "{{MSG}}", message.content), unsafe_allow_html=True) else: st.write(bot_template.replace( "{{MSG}}", message.content), unsafe_allow_html=True) def main(): load_dotenv() st.set_page_config(page_title="Chat with multiple Files", page_icon=":books:") st.write(css, unsafe_allow_html=True) if "conversation" not in st.session_state: st.session_state.conversation = None if "chat_history" not in st.session_state: st.session_state.chat_history = None st.header("Chat with multiple Files :") user_question = st.text_input("Ask a question about your documents:") if user_question: handle_userinput(user_question) with st.sidebar: openai_key = st.text_input("Paste your OpenAI API key (sk-...)") if openai_key: os.environ["OPENAI_API_KEY"] = openai_key st.subheader("Your documents") docs = st.file_uploader( "Upload your files here and click on 'Process'", accept_multiple_files=True) if st.button("Process"): with st.spinner("Processing"): doc_list = [] for file in docs: if file.type == 'text/plain': doc_list.extend(get_text_file(file)) elif file.type in ['application/octet-stream', 'application/pdf']: doc_list.extend(get_pdf_text(file)) elif file.type == 'text/csv': doc_list.extend(get_csv_file(file)) elif file.type == 'application/json': doc_list.extend(get_json_file(file)) text_chunks = get_text_chunks(doc_list) vectorstore = get_vectorstore(text_chunks) st.session_state.conversation = get_conversation_chain( vectorstore) if __name__ == '__main__': main()