DarkRodry commited on
Commit
d795b31
Β·
1 Parent(s): 47e7b37

first agent iteration

Browse files
Files changed (2) hide show
  1. app.py +75 -51
  2. requirements.txt +5 -1
app.py CHANGED
@@ -1,64 +1,88 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
 
 
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
- response = ""
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
 
 
61
 
 
 
62
 
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
+ from langchain_community.retrievers import BM25Retriever
2
+ from langchain.tools import Tool
3
+ from typing import TypedDict, Annotated
4
+ from langgraph.graph.message import add_messages
5
+ from langchain_core.messages import AnyMessage, HumanMessage, AIMessage
6
+ from langgraph.prebuilt import ToolNode
7
+ from langgraph.graph import START, StateGraph
8
+ from langgraph.prebuilt import tools_condition
9
+ from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace
10
+ from datasets import load_dataset
11
+ from langchain.docstore.document import Document
12
+ import os
13
 
14
+ # Load the dataset
15
+ guest_dataset = load_dataset("agents-course/unit3-invitees", split="train")
 
 
16
 
17
+ # Convert dataset entries into Document objects
18
+ docs = [
19
+ Document(
20
+ page_content="\n".join([
21
+ f"Name: {guest['name']}",
22
+ f"Relation: {guest['relation']}",
23
+ f"Description: {guest['description']}",
24
+ f"Email: {guest['email']}"
25
+ ]),
26
+ metadata={"name": guest["name"]}
27
+ )
28
+ for guest in guest_dataset
29
+ ]
30
 
31
+ bm25_retriever = BM25Retriever.from_documents(docs)
 
 
 
 
 
 
 
 
32
 
33
+ def extract_text(query: str) -> str:
34
+ """Retrieves detailed information about gala guests based on their name or relation."""
35
+ results = bm25_retriever.invoke(query)
36
+ if results:
37
+ return "\n\n".join([doc.page_content for doc in results[:3]])
38
+ else:
39
+ return "No matching guest information found."
40
 
41
+ guest_info_tool = Tool(
42
+ name="guest_info_retriever",
43
+ func=extract_text,
44
+ description="Retrieves detailed information about gala guests based on their name or relation."
45
+ )
46
+
47
+ # Generate the chat interface, including the tools
48
+ llm = HuggingFaceEndpoint(
49
+ repo_id="Qwen/Qwen2.5-Coder-32B-Instruct",
50
+ huggingfacehub_api_token=os.environ["HUGGINGFACEHUB_API_TOKEN"],
51
+ )
52
+
53
+ chat = ChatHuggingFace(llm=llm, verbose=True)
54
+ tools = [guest_info_tool]
55
+ chat_with_tools = chat.bind_tools(tools)
56
 
57
+ # Generate the AgentState and Agent graph
58
+ class AgentState(TypedDict):
59
+ messages: Annotated[list[AnyMessage], add_messages]
60
 
61
+ def assistant(state: AgentState):
62
+ return {
63
+ "messages": [chat_with_tools.invoke(state["messages"])],
64
+ }
 
 
 
 
65
 
66
+ ## The graph
67
+ builder = StateGraph(AgentState)
68
 
69
+ # Define nodes: these do the work
70
+ builder.add_node("assistant", assistant)
71
+ builder.add_node("tools", ToolNode(tools))
72
 
73
+ # Define edges: these determine how the control flow moves
74
+ builder.add_edge(START, "assistant")
75
+ builder.add_conditional_edges(
76
+ "assistant",
77
+ # If the latest message requires a tool, route to tools
78
+ # Otherwise, provide a direct response
79
+ tools_condition,
 
 
 
 
 
 
 
 
 
 
80
  )
81
+ builder.add_edge("tools", "assistant")
82
+ alfred = builder.compile()
83
 
84
+ messages = [HumanMessage(content="Tell me about our guest named 'Lady Ada Lovelace'.")]
85
+ response = alfred.invoke({"messages": messages})
86
 
87
+ print("🎩 Alfred's Response:")
88
+ print(response['messages'][-1].content)
requirements.txt CHANGED
@@ -1 +1,5 @@
1
- huggingface_hub==0.25.2
 
 
 
 
 
1
+ datasets
2
+ langgraph
3
+ langchain_huggingface
4
+ langchain_community
5
+ rank_bm25