Update app.py
Browse files
app.py
CHANGED
@@ -2,134 +2,134 @@ import gradio as gr
|
|
2 |
from gradio_calendar import Calendar
|
3 |
|
4 |
|
5 |
-
# # from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
6 |
-
# # from langchain_community.vectorstores import Chroma
|
7 |
-
# # from langchain_core.output_parsers import StrOutputParser
|
8 |
-
# import torch
|
9 |
-
# from transformers import (
|
10 |
-
# AutoModelForCausalLM,
|
11 |
-
# AutoTokenizer,
|
12 |
-
# BitsAndBytesConfig,
|
13 |
-
# pipeline,
|
14 |
-
# StoppingCriteria, StoppingCriteriaList
|
15 |
-
# )
|
16 |
|
17 |
-
# from langchain.
|
18 |
-
# from langchain_community.
|
19 |
-
# from
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
# # instructor_embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-large",
|
24 |
-
# # model_kwargs={"device": "cuda"})
|
25 |
|
|
|
|
|
26 |
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
31 |
-
#
|
32 |
-
#
|
33 |
|
34 |
|
35 |
-
# #
|
36 |
-
#
|
37 |
|
38 |
-
# #
|
39 |
-
#
|
40 |
|
41 |
-
# #
|
42 |
-
#
|
43 |
|
44 |
-
# #
|
45 |
-
#
|
46 |
|
47 |
-
#
|
48 |
-
# #
|
49 |
-
#
|
50 |
-
#
|
51 |
|
52 |
-
#
|
53 |
-
#
|
54 |
-
#
|
55 |
-
#
|
56 |
-
#
|
57 |
-
#
|
58 |
|
59 |
-
# #
|
60 |
-
#
|
61 |
-
#
|
62 |
-
#
|
63 |
-
#
|
64 |
-
#
|
65 |
-
#
|
66 |
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
# # #
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
#
|
107 |
-
#
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
|
134 |
|
135 |
|
|
|
2 |
from gradio_calendar import Calendar
|
3 |
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
# from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
7 |
+
# from langchain_community.vectorstores import Chroma
|
8 |
+
# from langchain_core.output_parsers import StrOutputParser
|
9 |
+
import torch
|
10 |
+
from transformers import (
|
11 |
+
AutoModelForCausalLM,
|
12 |
+
AutoTokenizer,
|
13 |
+
BitsAndBytesConfig,
|
14 |
+
pipeline,
|
15 |
+
StoppingCriteria, StoppingCriteriaList
|
16 |
+
)
|
17 |
|
18 |
+
from langchain.prompts import PromptTemplate
|
19 |
+
from langchain_community.llms import HuggingFacePipeline
|
20 |
+
from langchain.chains import LLMChain
|
21 |
+
from langchain_core.runnables import RunnablePassthrough, RunnableParallel
|
22 |
|
|
|
|
|
23 |
|
24 |
+
instructor_embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-large",
|
25 |
+
model_kwargs={"device": "cuda"})
|
26 |
|
27 |
|
28 |
+
model_name='SherlockAssistant/Mistral-7B-Instruct-Ukrainian'
|
29 |
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
31 |
+
#tokenizer.pad_token = tokenizer.unk_token
|
32 |
+
#tokenizer.padding_side = "right"
|
33 |
|
34 |
|
35 |
+
# # Activate 4-bit precision base model loading
|
36 |
+
# use_4bit = True
|
37 |
|
38 |
+
# # Compute dtype for 4-bit base models
|
39 |
+
# bnb_4bit_compute_dtype = "float16"
|
40 |
|
41 |
+
# # Quantization type (fp4 or nf4)
|
42 |
+
# bnb_4bit_quant_type = "nf4"
|
43 |
|
44 |
+
# # Activate nested quantization for 4-bit base models (double quantization)
|
45 |
+
# use_nested_quant = False
|
46 |
|
47 |
+
# #################################################################
|
48 |
+
# # Set up quantization config
|
49 |
+
# #################################################################
|
50 |
+
# compute_dtype = getattr(torch, bnb_4bit_compute_dtype)
|
51 |
|
52 |
+
# bnb_config = BitsAndBytesConfig(
|
53 |
+
# load_in_4bit=use_4bit,
|
54 |
+
# bnb_4bit_quant_type=bnb_4bit_quant_type,
|
55 |
+
# bnb_4bit_compute_dtype=compute_dtype,
|
56 |
+
# bnb_4bit_use_double_quant=use_nested_quant,
|
57 |
+
# )
|
58 |
|
59 |
+
# # Check GPU compatibility with bfloat16
|
60 |
+
# if compute_dtype == torch.float16 and use_4bit:
|
61 |
+
# major, _ = torch.cuda.get_device_capability()
|
62 |
+
# if major >= 8:
|
63 |
+
# print("=" * 80)
|
64 |
+
# print("Your GPU supports bfloat16: accelerate training with bf16=True")
|
65 |
+
# print("=" * 80)
|
66 |
|
67 |
|
68 |
+
model = AutoModelForCausalLM.from_pretrained(
|
69 |
+
model_name)
|
70 |
+
stop_list = [" \n\nAnswer:", " \n", " \n\n"]
|
71 |
+
stop_token_ids = [tokenizer(x, return_tensors='pt', add_special_tokens=False)['input_ids'] for x in stop_list]
|
72 |
+
stop_token_ids = [torch.LongTensor(x).to("cuda") for x in stop_token_ids]
|
73 |
|
74 |
+
class StopOnTokens(StoppingCriteria):
|
75 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
76 |
+
for stop_ids in stop_token_ids:
|
77 |
+
if torch.eq(input_ids[0][-len(stop_ids[0])+1:], stop_ids[0][1:]).all():
|
78 |
+
return True
|
79 |
+
return False
|
80 |
|
81 |
+
stopping_criteria = StoppingCriteriaList([StopOnTokens()])
|
82 |
+
|
83 |
+
|
84 |
+
text_generation_pipeline = pipeline(
|
85 |
+
model=model,
|
86 |
+
tokenizer=tokenizer,
|
87 |
+
task="text-generation",
|
88 |
+
temperature=0.01,
|
89 |
+
repetition_penalty=1.2,
|
90 |
+
return_full_text=True,
|
91 |
+
max_new_tokens=750, do_sample=True,
|
92 |
+
top_k=50, top_p=0.95,
|
93 |
+
stopping_criteria=stopping_criteria
|
94 |
+
)
|
95 |
+
mistral_llm = HuggingFacePipeline(pipeline=text_generation_pipeline)
|
96 |
+
# # # load chroma from disk
|
97 |
+
db3 = Chroma(persist_directory="/chroma/", embedding_function=instructor_embeddings)
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
retriever = db3.as_retriever(search_type="similarity_score_threshold",
|
103 |
+
search_kwargs={"score_threshold": .5,
|
104 |
+
"k": 20})
|
105 |
+
|
106 |
+
#retriever = db3.as_retriever(search_kwargs={"k":15})
|
107 |
+
# Get pre-written rag prompt
|
108 |
+
def format_docs(docs):
|
109 |
+
return "\n\n".join(doc.page_content for doc in docs)
|
110 |
+
|
111 |
+
|
112 |
+
template ="""" [INST] Ти асистент для надання відповідей з законодавства України. Використовуй лише вказаний нижче Context максимально точно. Описуй лише події простими словами без формальностей. Пиши чотири речення і будь максимально точним. Якщо контекст пустий - пиши "Я не маю релевантної інформації. Спробуйте ще".
|
113 |
+
Context: {context}
|
114 |
+
### QUESTION:
|
115 |
+
{question}
|
116 |
+
[/INST]
|
117 |
+
"""
|
118 |
+
prompt = PromptTemplate(
|
119 |
+
input_variables=["context", "question"],
|
120 |
+
template=template,
|
121 |
+
)
|
122 |
+
|
123 |
+
rag_chain_from_docs = (
|
124 |
+
RunnablePassthrough.assign(context=(lambda x: format_docs(x["context"])))
|
125 |
+
| prompt
|
126 |
+
| mistral_llm
|
127 |
+
| StrOutputParser()
|
128 |
+
)
|
129 |
+
|
130 |
+
rag_chain_with_source = RunnableParallel(
|
131 |
+
{"context": retriever, "question": RunnablePassthrough()}
|
132 |
+
).assign(answer=rag_chain_from_docs)
|
133 |
|
134 |
|
135 |
|