File size: 7,464 Bytes
0daf005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d4c4d4
 
0daf005
 
 
 
 
 
 
ca4743e
 
 
 
 
 
 
 
 
 
 
 
4d4c4d4
 
ca4743e
4d4c4d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca4743e
 
 
 
4d4c4d4
 
 
 
ca4743e
4d4c4d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca4743e
4d4c4d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0daf005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d4c4d4
 
0daf005
 
 
 
 
 
 
 
 
 
 
 
 
4d4c4d4
 
 
 
0daf005
4d4c4d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""

import evaluate
import datasets


# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""

# TODO: Add description of the module here
_DESCRIPTION = """\
This new module is designed to solve this great ML task and is crafted with a lot of care.
"""


# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
    predictions: list of predictions to score. Each predictions
        should be a string with tokens separated by spaces.
    references: list of reference for each prediction. Each
        reference should be a string with tokens separated by spaces.
Returns:
    accuracy: description of the first score,
    another_score: description of the second score,
Examples:
    Examples should be written in doctest format, and should illustrate how
    to use the function.

    >>> metric = evaluate.load("DarrenChensformer/aciton_generation")
    >>> results = metric.compute(references=[0, 1], predictions=[0, 1])
    >>> print(results)
    {'accuracy': 1.0}
"""

# TODO: Define external resources urls if needed
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"

VALID_LABELS = [
    "/開箱",
    "/教學",
    "/表達",
    "/分享/外部資訊",
    "/分享/個人資訊",
    "/推薦/產品",
    "/推薦/服務",
    "/推薦/其他",
    ""
]

class BaseEvaluater:
    eps = 1e-8
    valid_labels = None

    def __call__(self, preds, labels):
        return self._compute(preds, labels)

    def _compute(self, preds, labels):
        # calculate precision, recall, f1
        tp, fp, fn = 0, 0, 0
        for pred, label in zip(preds, labels):
            tp += len(set(pred) & set(label))
            fp += len(set(pred) - set(label))
            fn += len(set(label) - set(pred))
        precision = tp / (tp + fp + self.eps)
        recall = tp / (tp + fn + self.eps)
        f1 = 2 * precision * recall / (precision + recall)

        return {
            "precision": round(precision, 4),
            "recall": round(recall, 4),
            "f1": round(f1, 4)
        }
    
    def _init_valid_labels(self):
        if self.valid_labels is None:
            self.valid_labels = VALID_LABELS

class ClassEvaluater(BaseEvaluater):
    def __init__(self, valid_labels=None):
        self.valid_labels = valid_labels
        self._init_valid_labels()

    def __call__(self, preds, labels):
        preds = map(self.extract_class, preds)
        labels = map(self.extract_class, labels)
        # helper function to extract valid tags
        preds = list(map(self.extract_valid, preds))
        labels = list(map(self.extract_valid, labels))
        return self._compute(preds, labels)

    def extract_valid(self, tags):
        tags = list(filter(lambda tag: tag in self.valid_labels, tags))
        return tags

    def extract_class(self, tags):
        tags = map(lambda tag: tag.replace("/ ", "/"), tags)
        tags = list(map(self.batch_extract_class, tags))
        # deduplicate
        tags = list(dict.fromkeys(tags))
        return tags

    def batch_extract_class(self, tag):
        # filter out invalid tags
        tag = tag.split('/')
        if len(tag)==3:
            _class = '/'.join(tag[:2])
        elif len(tag)==4:
            _class = '/'.join(tag[:3])
        elif len(tag)==1:
            _class = ''
        else:
            _class = None
        if _class in self.valid_labels:
            return _class
        else:
            return ""


class PhraseEvaluater(BaseEvaluater):
    def __init__(self, valid_labels=None):
        self.valid_labels = valid_labels
        self._init_valid_labels()

    def __call__(self, preds, labels):
        preds = map(self.extract_phrase, preds)
        labels = map(self.extract_phrase, labels)
        return self._compute(preds, labels)
    
    def extract_phrase(self, tags):
        tags = map(lambda tag: tag.replace("/ ", "/"), tags)
        tags = list(map(self.batch_extract_phrase, tags))
        # deduplicate
        tags = list(dict.fromkeys(tags))
        return tags

    def batch_extract_phrase(self, phrase):
        # filter out invalid tags
        tag = phrase.split('/')
        if len(tag)==3:
            _class = '/'.join(tag[:2])
        elif len(tag)==4:
            _class = '/'.join(tag[:3])
        elif len(tag)==1:
            _class = ''
        else:
            _class = None
        if _class in self.valid_labels:
            return phrase.replace(_class, '')
        else:
            return ""

@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class action_generation(evaluate.Metric):
    """TODO: Short description of my evaluation module."""

    def _info(self):
        # TODO: Specifies the evaluate.EvaluationModuleInfo object
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features({
                'predictions': datasets.Sequence(datasets.Value('string')),
                'references': datasets.Sequence(datasets.Value('string')),
            }),
            # Homepage of the module for documentation
            homepage="http://module.homepage",
            # Additional links to the codebase or references
            codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
            reference_urls=["http://path.to.reference.url/new_module"]
        )

    def _download_and_prepare(self, dl_manager):
        """Optional: download external resources useful to compute the scores"""
        # TODO: Download external resources if needed
        pass

    def _compute(self, predictions, references,
            valid_labels=None, detailed_scores=False,
            weights={"class": 0.8, "phrase": 0.2}
        ):
        """Returns the scores"""
        class_eval = ClassEvaluater(valid_labels)(predictions, references)
        phrase_eval = PhraseEvaluater(valid_labels)(predictions, references)
        weight_sum = {
            key: round((class_eval[key] * weights["class"]) + (phrase_eval[key] * weights["phrase"]), 4)
            for key in class_eval
        }
        if detailed_scores:
            results = {
                "class": class_eval,
                "phrase": phrase_eval,
                "weighted_sum": weight_sum
            }
        else:
            results = weight_sum

        return results