# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TODO: Add a description here.""" import string import evaluate import datasets # TODO: Add BibTeX citation _CITATION = """\ @InProceedings{huggingface:module, title = {A great new module}, authors={huggingface, Inc.}, year={2020} } """ # TODO: Add description of the module here _DESCRIPTION = """\ This new module is designed to solve this great ML task and is crafted with a lot of care. """ # TODO: Add description of the arguments of the module here _KWARGS_DESCRIPTION = """ Calculates how good are predictions given some references, using certain scores Args: predictions: list of predictions to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Returns: accuracy: description of the first score, another_score: description of the second score, Examples: Examples should be written in doctest format, and should illustrate how to use the function. >>> metric = evaluate.load("DarrenChensformer/eval_keyphrase") >>> results = metric.compute(references=[["Hello","World"]], predictions=[["hello","world"]]) >>> print(results) {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'num_pred': 2.0, 'num_gold': 2.0} """ # TODO: Define external resources urls if needed BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt" @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class eval_keyphrase(evaluate.Metric): """TODO: Short description of my evaluation module.""" def _info(self): # TODO: Specifies the evaluate.EvaluationModuleInfo object return evaluate.MetricInfo( # This is the description that will appear on the modules page. module_type="metric", description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, # This defines the format of each prediction and reference features=datasets.Features({ 'predictions': datasets.Sequence(datasets.Value('string')), 'references': datasets.Sequence(datasets.Value('string')), }), # Homepage of the module for documentation homepage="http://module.homepage", # Additional links to the codebase or references codebase_urls=["http://github.com/path/to/codebase/of/new_module"], reference_urls=["http://path.to.reference.url/new_module"] ) def _download_and_prepare(self, dl_manager): """Optional: download external resources useful to compute the scores""" # TODO: Download external resources if needed pass def _normalize_keyphrase(self, kp): def white_space_fix(text): return ' '.join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return ''.join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_punc(lower(kp))) def _compute(self, predictions, references): """Returns the scores""" macro_metrics = {'precision': [], 'recall': [], 'f1': [], 'num_pred': [], 'num_gold': []} for targets, preds in zip(references, predictions): targets = [self._normalize_keyphrase(tmp_key).strip() for tmp_key in targets if len(self._normalize_keyphrase(tmp_key).strip()) != 0] preds = [self._normalize_keyphrase(tmp_key).strip() for tmp_key in preds if len(self._normalize_keyphrase(tmp_key).strip()) != 0] total_tgt_set = set(targets) total_preds = set(preds) if len(total_tgt_set) == 0: continue # get the total_correctly_matched indicators total_correctly_matched = len(total_preds & total_tgt_set) # macro metric calculating precision = total_correctly_matched / len(total_preds) if len(total_preds) else 0.0 recall = total_correctly_matched / len(total_tgt_set) f1 = 2 * precision * recall / (precision + recall) if total_correctly_matched > 0 else 0.0 macro_metrics['precision'].append(precision) macro_metrics['recall'].append(recall) macro_metrics['f1'].append(f1) macro_metrics['num_pred'].append(len(total_preds)) macro_metrics['num_gold'].append(len(total_tgt_set)) return { k: round(sum(v)/len(v), 4) for k, v in macro_metrics.items()}