File size: 11,266 Bytes
e2c3a04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import requests
import io
from PIL import Image
import re
import json
import xml.etree.ElementTree as ET
class SmolLMWithTools:
def __init__(self):
# Initialize SmolLM3
self.checkpoint = "HuggingFaceTB/SmolLM3-3B"
self.device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Loading SmolLM3 on {self.device}...")
self.tokenizer = AutoTokenizer.from_pretrained(self.checkpoint)
self.model = AutoModelForCausalLM.from_pretrained(
self.checkpoint,
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32
).to(self.device)
# HF API setup for FLUX
self.hf_token = None
self.flux_api_url = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
# Define available tools
self.tools = [
{
"name": "generate_image",
"description": "Generate an image using AI based on a text description. Use this when the user asks for images, pictures, drawings, or visual content.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "A detailed description of the image to generate. Be specific and descriptive."
}
},
"required": ["prompt"]
}
}
]
print("Model loaded successfully!")
def set_hf_token(self, token):
"""Set the Hugging Face API token"""
self.hf_token = token
return "β
HF Token set successfully!"
def generate_image_tool(self, prompt):
"""Tool function to generate images using FLUX"""
if not self.hf_token:
return {"success": False, "error": "HF token not set", "image": None}
headers = {"Authorization": f"Bearer {self.hf_token}"}
data = {"inputs": prompt}
try:
response = requests.post(self.flux_api_url, headers=headers, json=data)
if response.status_code == 200:
image = Image.open(io.BytesIO(response.content))
return {"success": True, "message": f"Successfully generated image: {prompt}", "image": image}
elif response.status_code == 503:
return {"success": False, "error": "Model is loading, please try again", "image": None}
else:
return {"success": False, "error": f"API error: {response.status_code}", "image": None}
except Exception as e:
return {"success": False, "error": str(e), "image": None}
def parse_tool_calls(self, text):
"""Parse tool calls from model output"""
tool_calls = []
# Look for XML-style tool calls
tool_call_pattern = r'<tool_call>\s*<invoke name="([^"]+)">\s*<parameter name="([^"]+)">([^<]+)</parameter>\s*</invoke>\s*</tool_call>'
matches = re.findall(tool_call_pattern, text, re.DOTALL)
for match in matches:
tool_name, param_name, param_value = match
tool_calls.append({
"name": tool_name,
"parameters": {param_name: param_value.strip()}
})
return tool_calls
def execute_tool_call(self, tool_call):
"""Execute a tool call and return results"""
tool_name = tool_call["name"]
parameters = tool_call["parameters"]
if tool_name == "generate_image":
prompt = parameters.get("prompt", "")
return self.generate_image_tool(prompt)
else:
return {"success": False, "error": f"Unknown tool: {tool_name}"}
def chat_with_tools(self, messages):
"""Generate response with tool calling capability"""
try:
# Apply chat template with tools
inputs = self.tokenizer.apply_chat_template(
messages,
enable_thinking=False,
xml_tools=self.tools,
add_generation_prompt=True,
tokenize=True,
return_tensors="pt"
)
inputs = inputs.to(self.device)
# Generate response
with torch.no_grad():
outputs = self.model.generate(
inputs,
max_new_tokens=1024,
temperature=0.7,
do_sample=True,
pad_token_id=self.tokenizer.eos_token_id
)
# Decode the full response
full_response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract just the new content (after the prompt)
prompt_text = self.tokenizer.decode(inputs[0], skip_special_tokens=True)
new_content = full_response[len(prompt_text):].strip()
return new_content
except Exception as e:
return f"Error generating response: {str(e)}"
def process_conversation(self, user_message, history, hf_token):
"""Process a conversation turn with potential tool calls"""
if hf_token and not self.hf_token:
self.set_hf_token(hf_token)
# Build message history
messages = []
for h in history:
messages.append({"role": "user", "content": h[0]})
if h[1]:
messages.append({"role": "assistant", "content": h[1]})
messages.append({"role": "user", "content": user_message})
# Get model response
assistant_response = self.chat_with_tools(messages)
# Check for tool calls in the response
tool_calls = self.parse_tool_calls(assistant_response)
generated_image = None
final_response = assistant_response
if tool_calls:
# Execute tool calls
tool_results = []
for tool_call in tool_calls:
result = self.execute_tool_call(tool_call)
tool_results.append(result)
if tool_call["name"] == "generate_image" and result.get("image"):
generated_image = result["image"]
# Continue conversation with tool results
messages.append({"role": "assistant", "content": assistant_response})
# Add tool results as a system message
tool_summary = "\n".join([
f"Tool {i+1} result: {result.get('message', result.get('error', 'Unknown result'))}"
for i, result in enumerate(tool_results)
])
messages.append({"role": "user", "content": f"Tool execution results: {tool_summary}\n\nPlease respond to the user about the results."})
# Get final response
final_response = self.chat_with_tools(messages)
# Update history
history.append([user_message, final_response])
return history, "", generated_image
# Initialize the system
chat_system = SmolLMWithTools()
def create_interface():
with gr.Blocks(title="SmolLM3 Tool Calling + FLUX", theme=gr.themes.Soft()) as app:
gr.Markdown("""
# π€π οΈ SmolLM3 with Tool Calling + FLUX
SmolLM3 can autonomously decide when to generate images based on your conversation!
Just chat naturally - the model will call the image generation tool when appropriate.
**Examples:**
- "Can you create a picture of a sunset?"
- "I need an image of a robot for my presentation"
- "Draw me a fantasy landscape"
- "Show me what a purple elephant would look like"
""")
with gr.Row():
with gr.Column(scale=2):
# HF Token input
hf_token_input = gr.Textbox(
label="π Hugging Face API Token",
placeholder="Enter your HF token for image generation",
type="password"
)
# Chat interface
chatbot = gr.Chatbot(
label="Chat with SmolLM3 (Tool Calling Enabled)",
height=500,
show_copy_button=True
)
msg_input = gr.Textbox(
label="Message",
placeholder="Ask for anything - SmolLM3 will decide if it needs to generate an image...",
lines=3
)
with gr.Row():
send_btn = gr.Button("Send π€", variant="primary")
clear_btn = gr.Button("Clear ποΈ")
with gr.Column(scale=1):
image_output = gr.Image(
label="Generated Images",
height=500
)
gr.Markdown("""
### π§ Available Tools:
- **generate_image**: Creates images from text descriptions
The model decides autonomously when to use tools based on context!
""")
# Event handlers
def respond(message, history, hf_token):
if not message.strip():
return history, "", None
return chat_system.process_conversation(message, history, hf_token)
# Send message
send_btn.click(
respond,
inputs=[msg_input, chatbot, hf_token_input],
outputs=[chatbot, msg_input, image_output]
)
# Enter key
msg_input.submit(
respond,
inputs=[msg_input, chatbot, hf_token_input],
outputs=[chatbot, msg_input, image_output]
)
# Clear chat
clear_btn.click(
lambda: ([], None),
outputs=[chatbot, image_output]
)
gr.Markdown("""
### π Setup Instructions:
1. **Get HF Token**: Visit [HuggingFace Tokens](https://huggingface.co/settings/tokens)
2. **Create Token**: Generate a token with "Read" permissions
3. **Enter Token**: Paste it in the field above
4. **Start Chatting**: Ask for anything - images, questions, explanations!
### π§ How it Works:
- SmolLM3 analyzes your message
- Decides if it needs to call tools
- Generates appropriate tool calls
- Executes the tools and responds with results
**The AI is in full control of when and how to use tools!**
""")
return app
if __name__ == "__main__":
app = create_interface()
app.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=True
) |