import os os.environ['TRANSFORMERS_CACHE'] = '/app/cache' # Import the necessary modules from flask import Flask, request, render_template from transformers import pipeline # Create a Flask app app = Flask(__name__) # Create a text classification pipeline using a pretrained model classifier = pipeline("text-classification", model="KoalaAI/Text-Moderation") # Define a route for the home page @app.route("/") def home(): # Render a template with a web form return render_template("index.html") # Define a route for the classification result @app.route("/classify", methods=["POST"]) def classify(): # Get the text from the web form text = request.form.get("text") # Perform the text classification result = classifier(text)[0] # Extract the label and the score label = result["label"] score = result["score"] # Render a template with the classification result return render_template("result.html", text=text, label=label, score=score) # Run the app in debug mode if __name__ == "__main__": app.run(port=7860, debug=True)