DarwinAnim8or commited on
Commit
91315d8
·
verified ·
1 Parent(s): b88f866

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +126 -289
app.py CHANGED
@@ -2,341 +2,178 @@ import gradio as gr
2
  from transformers import AutoTokenizer, AutoModelForCausalLM
3
  import torch
4
 
5
- # Model configuration - change this to your model path
6
  MODEL_NAME = "DarwinAnim8or/TinyRP"
7
 
8
- # Initialize model and tokenizer for CPU inference
9
- print("Loading model for CPU inference...")
10
- try:
11
- tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
12
- model = AutoModelForCausalLM.from_pretrained(
13
- MODEL_NAME,
14
- torch_dtype=torch.float32, # Use float32 for CPU
15
- device_map="cpu",
16
- trust_remote_code=True
17
- )
18
- print(f"✅ Model loaded successfully on CPU: {MODEL_NAME}")
19
- except Exception as e:
20
- print(f"❌ Error loading model: {e}")
21
- tokenizer = None
22
- model = None
 
 
 
 
 
 
23
 
24
  # Sample character presets
25
- SAMPLE_CHARACTERS = {
26
  "Custom Character": "",
27
- "Adventurous Knight": "You are Sir Gareth, a brave and noble knight on a quest to save the kingdom. You speak with honor and courage, always ready to help those in need. You carry an enchanted sword and have a loyal horse named Thunder.",
28
- "Mysterious Wizard": "You are Eldara, an ancient and wise wizard who speaks in riddles and knows secrets of the mystical arts. You live in a tower filled with magical books and potions. You are helpful but often cryptic in your responses.",
29
- "Friendly Tavern Keeper": "You are Bram, a cheerful tavern keeper who loves telling stories and meeting new travelers. Your tavern 'The Dancing Dragon' is a warm, welcoming place. You know all the local gossip and always have a tale to share.",
30
- "Curious Scientist": "You are Dr. Maya Chen, a brilliant scientist who is fascinated by discovery and invention. You're enthusiastic about explaining complex concepts in simple ways and always looking for new experiments to try.",
31
- "Space Explorer": "You are Captain Nova, a fearless space explorer who has traveled to distant galaxies. You pilot the starship 'Wanderer' and have encountered many alien species. You're brave, curious, and always ready for the next adventure.",
32
- "Fantasy Princess": "You are Princess Lyra, kind-hearted royalty who cares deeply about her people. You're intelligent, diplomatic, and skilled in both politics and magic. You often sneak out of the castle to help citizens in need."
33
  }
34
 
35
- def build_chatml_conversation(message, history, character_description):
36
- """Build a conversation in ChatML format"""
37
- conversation = ""
38
-
39
- # Add system message if character is defined
40
- if character_description.strip():
41
- conversation += f"<|im_start|>system\n{character_description.strip()}<|im_end|>\n"
42
-
43
- # Add conversation history
44
- for user_msg, assistant_msg in history:
45
- if user_msg:
46
- conversation += f"<|im_start|>user\n{user_msg}<|im_end|>\n"
47
- if assistant_msg:
48
- conversation += f"<|im_start|>assistant\n{assistant_msg}<|im_end|>\n"
49
-
50
- # Add current user message
51
- conversation += f"<|im_start|>user\n{message}<|im_end|>\n"
52
-
53
- # Start assistant response
54
- conversation += "<|im_start|>assistant\n"
55
-
56
- return conversation
57
-
58
- def generate_cpu_response(message, history, character_description, max_tokens, temperature, top_p, repetition_penalty):
59
- """Generate response using local CPU inference with ChatML format"""
60
-
61
- if model is None or tokenizer is None:
62
- return "❌ Error: Model not loaded properly. Please check the model path."
63
 
64
  if not message.strip():
65
- return "Please enter a message."
 
 
 
 
 
66
 
67
  try:
68
  # Build ChatML conversation
69
- conversation = build_chatml_conversation(message, history, character_description)
70
 
71
- # Tokenize the conversation
72
- inputs = tokenizer.encode(
73
- conversation,
74
- return_tensors="pt",
75
- truncation=True,
76
- max_length=1024 - max_tokens # Leave room for response
77
- )
 
78
 
79
- print(f"🔄 Generating response... (Input length: {inputs.shape[1]} tokens)")
 
80
 
81
- # Generate response on CPU
 
 
 
82
  with torch.no_grad():
83
  outputs = model.generate(
84
  inputs,
85
- max_new_tokens=int(max_tokens),
86
- temperature=float(temperature),
87
- top_p=float(top_p),
88
- repetition_penalty=float(repetition_penalty),
89
  do_sample=True,
90
- pad_token_id=tokenizer.pad_token_id if tokenizer.pad_token_id else tokenizer.eos_token_id,
91
- eos_token_id=tokenizer.eos_token_id,
92
- use_cache=True,
93
- num_return_sequences=1
94
  )
95
 
96
- # Decode the full response
97
- full_response = tokenizer.decode(outputs[0], skip_special_tokens=False)
98
-
99
- # Extract just the assistant's response from ChatML format
100
- if "<|im_start|>assistant\n" in full_response:
101
- # Split on the last assistant tag to get only the new response
102
- assistant_parts = full_response.split("<|im_start|>assistant\n")
103
- if len(assistant_parts) > 1:
104
- response = assistant_parts[-1]
105
- # Remove any trailing <|im_end|> or other tokens
106
- response = response.replace("<|im_end|>", "").strip()
107
-
108
- # Clean up any remaining special tokens
109
- response = response.replace("<|im_start|>", "").replace("<|im_end|>", "")
110
- response = response.replace("<s>", "").replace("</s>", "")
111
- response = response.strip()
112
-
113
- if response:
114
- print(f"✅ Generated {len(response)} characters")
115
- return response
116
 
117
- # Fallback: try to extract response after the input
118
- input_text = tokenizer.decode(inputs[0], skip_special_tokens=False)
119
- if len(full_response) > len(input_text):
120
- response = full_response[len(input_text):].strip()
121
- # Clean special tokens
122
- response = response.replace("<|im_start|>", "").replace("<|im_end|>", "")
123
- response = response.replace("<s>", "").replace("</s>", "")
124
- response = response.strip()
125
-
126
- if response:
127
- return response
128
 
129
- return "Sorry, I couldn't generate a proper response. Please try again."
 
 
130
 
 
 
 
131
  except Exception as e:
132
- print(f"❌ Generation error: {e}")
133
- return f"Error generating response: {str(e)}"
134
-
135
- def load_character_preset(character_name):
136
- """Load a character preset description"""
137
- return SAMPLE_CHARACTERS.get(character_name, "")
138
-
139
- def chat_function(message, history, character_description, max_tokens, temperature, top_p, repetition_penalty):
140
- """Main chat function that handles the conversation flow"""
141
-
142
- if not message.strip():
143
- return history, ""
144
-
145
- # Generate response using CPU inference
146
- response = generate_cpu_response(
147
- message,
148
- history,
149
- character_description,
150
- max_tokens,
151
- temperature,
152
- top_p,
153
- repetition_penalty
154
- )
155
 
156
  # Add to history
157
  history.append([message, response])
158
-
159
- return history, ""
160
 
161
- # Custom CSS for better styling
162
- css = """
163
- .character-card {
164
- background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
165
- border-radius: 15px;
166
- padding: 20px;
167
- margin: 10px 0;
168
- color: white;
169
- }
170
 
171
- .title-text {
172
- text-align: center;
173
- font-size: 2.5em;
174
- font-weight: bold;
175
- background: linear-gradient(45deg, #667eea, #764ba2);
176
- -webkit-background-clip: text;
177
- -webkit-text-fill-color: transparent;
178
- margin-bottom: 20px;
179
- }
180
 
181
- .parameter-box {
182
- background: #f8f9fa;
183
- border-radius: 10px;
184
- padding: 15px;
185
- margin: 10px 0;
186
- }
187
-
188
- .cpu-badge {
189
- background: #28a745;
190
- color: white;
191
- padding: 5px 10px;
192
- border-radius: 15px;
193
- font-size: 0.8em;
194
- margin-left: 10px;
195
- }
196
- """
197
 
198
- # Create the Gradio interface
199
- with gr.Blocks(css=css, title="TinyRP Chat Demo") as demo:
200
- gr.HTML('<div class="title-text">🎭 TinyRP Character Chat <span class="cpu-badge">CPU Inference</span></div>')
201
 
202
- gr.Markdown("""
203
- ### Welcome to TinyRP!
204
- This is a demo of a small but capable roleplay model running on CPU. Choose a character preset or create your own!
205
-
206
- **Tips for better roleplay:**
207
- - Be descriptive in your messages
208
- - Stay in character
209
- - Uses ChatML format for best results
210
- - Adjust temperature for creativity vs consistency
211
-
212
- ⚡ **Running on CPU** - Responses may take 10-30 seconds depending on your hardware.
213
- """)
214
 
215
  with gr.Row():
216
- with gr.Column(scale=2):
217
- # Chat interface
218
- chatbot = gr.Chatbot(
219
- label="Chat",
220
- height=500,
221
- show_label=False,
222
- avatar_images=("🧑", "🎭")
223
- )
224
 
225
- with gr.Row():
226
- msg = gr.Textbox(
227
- label="Your message",
228
- placeholder="Type your message here...",
229
- lines=2,
230
- scale=4
231
- )
232
- send_btn = gr.Button("Send", variant="primary", scale=1)
233
-
234
  with gr.Column(scale=1):
235
- # Character selection
236
- with gr.Group():
237
- gr.Markdown("### 🎭 Character Setup")
238
- character_preset = gr.Dropdown(
239
- choices=list(SAMPLE_CHARACTERS.keys()),
240
- value="Custom Character",
241
- label="Character Presets",
242
- interactive=True
243
- )
244
-
245
- character_description = gr.Textbox(
246
- label="Character Description",
247
- placeholder="Describe your character's personality, background, and speaking style...",
248
- lines=6,
249
- value=""
250
- )
251
-
252
- load_preset_btn = gr.Button("Load Preset", variant="secondary")
253
 
254
- # Generation parameters
255
- with gr.Group():
256
- gr.Markdown("### ⚙️ Generation Settings")
257
-
258
- gr.Markdown("*Using ChatML format automatically*")
259
-
260
- max_tokens = gr.Slider(
261
- minimum=16,
262
- maximum=256,
263
- value=100,
264
- step=16,
265
- label="Max Response Length",
266
- info="Longer = more detailed responses (slower on CPU)"
267
- )
268
-
269
- temperature = gr.Slider(
270
- minimum=0.1,
271
- maximum=2.0,
272
- value=0.9,
273
- step=0.1,
274
- label="Temperature",
275
- info="Higher = more creative/random"
276
- )
277
-
278
- top_p = gr.Slider(
279
- minimum=0.1,
280
- maximum=1.0,
281
- value=0.85,
282
- step=0.05,
283
- label="Top-p",
284
- info="Focus on top % of likely words"
285
- )
286
-
287
- repetition_penalty = gr.Slider(
288
- minimum=1.0,
289
- maximum=1.5,
290
- value=1.1,
291
- step=0.05,
292
- label="Repetition Penalty",
293
- info="Reduce repetitive text"
294
- )
295
 
296
- # Control buttons
297
- with gr.Group():
298
- clear_btn = gr.Button("🗑️ Clear Chat", variant="secondary")
299
-
300
- # Sample character cards
301
- with gr.Row():
302
- gr.Markdown("### 🌟 Featured Characters")
303
 
 
 
304
  with gr.Row():
305
- for char_name, char_desc in list(SAMPLE_CHARACTERS.items())[1:4]: # Show first 3 non-custom
306
- with gr.Column(scale=1):
307
- gr.Markdown(f"""
308
- <div class="character-card">
309
- <h4>{char_name}</h4>
310
- <p>{char_desc[:100]}...</p>
311
- </div>
312
- """)
313
-
314
- # Event handlers
315
- send_btn.click(
316
- chat_function,
317
- inputs=[msg, chatbot, character_description, max_tokens, temperature, top_p, repetition_penalty],
318
- outputs=[chatbot, msg]
319
  )
320
 
321
- msg.submit(
322
- chat_function,
323
- inputs=[msg, chatbot, character_description, max_tokens, temperature, top_p, repetition_penalty],
324
- outputs=[chatbot, msg]
325
  )
326
 
327
- load_preset_btn.click(
328
- load_character_preset,
329
- inputs=[character_preset],
330
- outputs=[character_description]
331
  )
332
-
333
- character_preset.change(
334
- load_character_preset,
335
- inputs=[character_preset],
336
- outputs=[character_description]
337
- )
338
-
339
- clear_btn.click(lambda: ([], ""), outputs=[chatbot, msg])
340
 
341
  if __name__ == "__main__":
342
  demo.launch()
 
2
  from transformers import AutoTokenizer, AutoModelForCausalLM
3
  import torch
4
 
5
+ # Model configuration
6
  MODEL_NAME = "DarwinAnim8or/TinyRP"
7
 
8
+ # Global variables for model
9
+ tokenizer = None
10
+ model = None
11
+
12
+ def load_model():
13
+ """Load model and tokenizer"""
14
+ global tokenizer, model
15
+ try:
16
+ print("Loading model for CPU inference...")
17
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
18
+ model = AutoModelForCausalLM.from_pretrained(
19
+ MODEL_NAME,
20
+ torch_dtype=torch.float32,
21
+ device_map="cpu",
22
+ trust_remote_code=True
23
+ )
24
+ print(f"✅ Model loaded successfully: {MODEL_NAME}")
25
+ return True
26
+ except Exception as e:
27
+ print(f"❌ Error loading model: {e}")
28
+ return False
29
 
30
  # Sample character presets
31
+ CHARACTERS = {
32
  "Custom Character": "",
33
+ "Adventurous Knight": "You are Sir Gareth, a brave and noble knight on a quest to save the kingdom. You speak with honor and courage, always ready to help those in need.",
34
+ "Mysterious Wizard": "You are Eldara, an ancient and wise wizard who speaks in riddles and knows secrets of the mystical arts. You are helpful but often cryptic.",
35
+ "Friendly Tavern Keeper": "You are Bram, a cheerful tavern keeper who loves telling stories and meeting new travelers. Your tavern is a warm, welcoming place.",
36
+ "Curious Scientist": "You are Dr. Maya Chen, a brilliant scientist fascinated by discovery. You explain complex concepts simply and love new experiments.",
37
+ "Space Explorer": "You are Captain Nova, a fearless space explorer who has traveled to distant galaxies. You're brave, curious, and ready for adventure."
 
38
  }
39
 
40
+ def chat_respond(message, history, character_desc, max_tokens, temperature, top_p, rep_penalty):
41
+ """Main chat response function"""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
  if not message.strip():
44
+ return history
45
+
46
+ if model is None:
47
+ response = "❌ Model not loaded. Please check the model path."
48
+ history.append([message, response])
49
+ return history
50
 
51
  try:
52
  # Build ChatML conversation
53
+ conversation = ""
54
 
55
+ # Add character as system message
56
+ if character_desc.strip():
57
+ conversation += f"<|im_start|>system\n{character_desc}<|im_end|>\n"
58
+
59
+ # Add history
60
+ for user_msg, bot_msg in history:
61
+ conversation += f"<|im_start|>user\n{user_msg}<|im_end|>\n"
62
+ conversation += f"<|im_start|>assistant\n{bot_msg}<|im_end|>\n"
63
 
64
+ # Add current message
65
+ conversation += f"<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n"
66
 
67
+ # Tokenize
68
+ inputs = tokenizer.encode(conversation, return_tensors="pt", max_length=900, truncation=True)
69
+
70
+ # Generate
71
  with torch.no_grad():
72
  outputs = model.generate(
73
  inputs,
74
+ max_new_tokens=max_tokens,
75
+ temperature=temperature,
76
+ top_p=top_p,
77
+ repetition_penalty=rep_penalty,
78
  do_sample=True,
79
+ pad_token_id=tokenizer.eos_token_id,
80
+ eos_token_id=tokenizer.eos_token_id
 
 
81
  )
82
 
83
+ # Decode response
84
+ full_text = tokenizer.decode(outputs[0], skip_special_tokens=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85
 
86
+ # Extract assistant response
87
+ if "<|im_start|>assistant\n" in full_text:
88
+ response = full_text.split("<|im_start|>assistant\n")[-1]
89
+ response = response.replace("<|im_end|>", "").strip()
90
+ else:
91
+ response = "Sorry, couldn't generate a response."
 
 
 
 
 
92
 
93
+ # Clean up response
94
+ response = response.replace("<|im_start|>", "").replace("<|im_end|>", "")
95
+ response = response.strip()
96
 
97
+ if not response:
98
+ response = "No response generated."
99
+
100
  except Exception as e:
101
+ response = f"Error: {str(e)}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102
 
103
  # Add to history
104
  history.append([message, response])
105
+ return history
 
106
 
107
+ def load_character(character_name):
108
+ """Load character preset"""
109
+ return CHARACTERS.get(character_name, "")
 
 
 
 
 
 
110
 
111
+ def clear_chat():
112
+ """Clear chat history"""
113
+ return []
 
 
 
 
 
 
114
 
115
+ # Load model on startup
116
+ model_loaded = load_model()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117
 
118
+ # Create interface
119
+ with gr.Blocks(title="TinyRP Chat") as demo:
 
120
 
121
+ gr.Markdown("# 🎭 TinyRP Character Chat")
122
+ gr.Markdown("Chat with AI characters using local CPU inference!")
 
 
 
 
 
 
 
 
 
 
123
 
124
  with gr.Row():
125
+ with gr.Column(scale=3):
126
+ chatbot = gr.Chatbot(height=500, label="Conversation")
127
+ msg_box = gr.Textbox(label="Message", placeholder="Type here...")
 
 
 
 
 
128
 
 
 
 
 
 
 
 
 
 
129
  with gr.Column(scale=1):
130
+ gr.Markdown("### Character")
131
+ char_dropdown = gr.Dropdown(
132
+ choices=list(CHARACTERS.keys()),
133
+ value="Custom Character",
134
+ label="Preset"
135
+ )
136
+ char_text = gr.Textbox(
137
+ label="Description",
138
+ lines=4,
139
+ placeholder="Character description..."
140
+ )
141
+ load_btn = gr.Button("Load Character")
 
 
 
 
 
 
142
 
143
+ gr.Markdown("### Settings")
144
+ max_tokens = gr.Slider(16, 256, 80, label="Max tokens")
145
+ temperature = gr.Slider(0.1, 2.0, 0.9, label="Temperature")
146
+ top_p = gr.Slider(0.1, 1.0, 0.85, label="Top-p")
147
+ rep_penalty = gr.Slider(1.0, 1.5, 1.1, label="Rep penalty")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
148
 
149
+ clear_btn = gr.Button("Clear Chat")
 
 
 
 
 
 
150
 
151
+ # Character samples
152
+ gr.Markdown("### Sample Characters")
153
  with gr.Row():
154
+ for name in ["Adventurous Knight", "Mysterious Wizard", "Space Explorer"]:
155
+ gr.Markdown(f"**{name}**: {CHARACTERS[name][:80]}...")
156
+
157
+ # Event handlers - simplified
158
+ msg_box.submit(
159
+ fn=chat_respond,
160
+ inputs=[msg_box, chatbot, char_text, max_tokens, temperature, top_p, rep_penalty],
161
+ outputs=[chatbot]
162
+ ).then(
163
+ fn=lambda: "",
164
+ outputs=[msg_box]
 
 
 
165
  )
166
 
167
+ load_btn.click(
168
+ fn=load_character,
169
+ inputs=[char_dropdown],
170
+ outputs=[char_text]
171
  )
172
 
173
+ clear_btn.click(
174
+ fn=clear_chat,
175
+ outputs=[chatbot]
 
176
  )
 
 
 
 
 
 
 
 
177
 
178
  if __name__ == "__main__":
179
  demo.launch()