File size: 9,216 Bytes
df5fc1f
db93af0
3555d2b
69138eb
df5fc1f
 
4dd92b9
bab31ce
df5fc1f
 
 
 
 
 
db93af0
 
df5fc1f
a8df78e
897b11c
 
 
 
544fc6a
a8df78e
 
 
 
 
 
 
 
 
544fc6a
 
db93af0
 
 
df5fc1f
 
 
 
 
 
 
 
 
897b11c
df5fc1f
897b11c
 
df5fc1f
 
1ba2980
897b11c
df5fc1f
3555d2b
 
897b11c
 
db93af0
df5fc1f
 
873d584
 
a8df78e
 
 
 
 
 
873d584
 
a8df78e
1ba2980
df5fc1f
 
897b11c
df5fc1f
1ba2980
df5fc1f
 
db93af0
 
 
 
df5fc1f
db93af0
 
 
 
 
1ba2980
df5fc1f
1ba2980
897b11c
 
 
 
df5fc1f
db93af0
df5fc1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d39048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
897b11c
a8df78e
 
0d39048
a8df78e
 
 
 
897b11c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df5fc1f
 
 
 
 
 
d95a2ab
897b11c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d205093
897b11c
 
 
 
 
 
 
 
d205093
a8df78e
d205093
897b11c
 
 
 
 
 
 
d95a2ab
 
 
 
897b11c
d95a2ab
df5fc1f
 
8891183
 
 
 
a8df78e
8891183
a8df78e
 
8891183
a8df78e
8891183
a8df78e
 
 
 
 
 
 
 
8891183
1308b02
 
897b11c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
from fastapi import FastAPI, HTTPException, BackgroundTasks, Depends
from pydantic import BaseModel
from fastapi.staticfiles import StaticFiles
from fastapi.concurrency import run_in_threadpool
from fastapi.middleware.cors import CORSMiddleware
import uuid
import time
import tempfile
from concurrent.futures import ThreadPoolExecutor
from pymongo import MongoClient
from urllib.parse import quote_plus
from langchain_groq import ChatGroq
from aura_sr import AuraSR
from io import BytesIO
from PIL import Image
import requests
import os
import logging
from dotenv import load_dotenv

# Load environment variables
load_dotenv()

# Validate environment variables
assert os.getenv('MONGO_USER') and os.getenv('MONGO_PASSWORD') and os.getenv('MONGO_HOST'), "MongoDB credentials missing!"
assert os.getenv('LLM_API_KEY'), "LLM API Key missing!"
assert os.getenv('BFL_API_KEY'), "BFL API Key missing!"

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Set the Hugging Face cache directory to a writable location
os.environ['HF_HOME'] = '/tmp/huggingface_cache'

app = FastAPI()

# Middleware for CORS
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_methods=["*"],
    allow_headers=["*"],
)

# Globals
executor = ThreadPoolExecutor(max_workers=5)
llm = None
mongo_client = MongoClient(f"mongodb+srv://{os.getenv('MONGO_USER')}:{quote_plus(os.getenv('MONGO_PASSWORD'))}@{os.getenv('MONGO_HOST')}/")
db = mongo_client["Flux"]
collection = db["chat_histories"]
chat_sessions = {}

# Temporary directory for storing images
image_storage_dir = tempfile.mkdtemp()
app.mount("/images", StaticFiles(directory=image_storage_dir), name="images")

# Initialize AuraSR during startup
aura_sr = None

@app.on_event("startup")
async def startup():
    global llm, aura_sr
    try:
        llm = ChatGroq(
            model="llama-3.3-70b-versatile",
            temperature=0.7,
            max_tokens=1024,
            api_key=os.getenv('LLM_API_KEY'),
        )
        aura_sr = AuraSR.from_pretrained("fal/AuraSR-v2")
    except Exception as e:
        logger.error(f"Error initializing models: {e}")

@app.on_event("shutdown")
def shutdown():
    mongo_client.close()
    executor.shutdown()

# Pydantic models
class ImageRequest(BaseModel):
    subject: str
    style: str
    color_theme: str
    elements: str
    color_mode: str
    lighting_conditions: str
    framing_style: str
    material_details: str
    text: str
    background_details: str
    user_prompt: str
    chat_id: str

class UpscaleRequest(BaseModel):
    image_url: str

# Helper functions
def generate_chat_id():
    chat_id = str(uuid.uuid4())
    chat_sessions[chat_id] = collection
    return chat_id

def get_chat_history(chat_id):
    messages = collection.find({"session_id": chat_id})
    return "\n".join(
        f"User: {msg['content']}" if msg['role'] == "user" else f"AI: {msg['content']}"
        for msg in messages
    )

def save_image_locally(image, filename):
    filepath = os.path.join(image_storage_dir, filename)
    image.save(filepath, format="PNG")
    return filepath


def make_request_with_retries(url, headers, payload, retries=3, delay=2):
    """
    Makes an HTTP POST request with retries in case of failure.
    :param url: The URL for the request.
    :param headers: Headers to include in the request.
    :param payload: Payload to include in the request.
    :param retries: Number of retries on failure.
    :param delay: Delay between retries.
    :return: Response JSON from the server.
    """
    for attempt in range(retries):
        try:
            with requests.Session() as session:
                response = session.post(url, headers=headers, json=payload, timeout=30)
                response.raise_for_status()
                return response.json()
        except requests.exceptions.RequestException as e:
            if attempt < retries - 1:
                time.sleep(delay)
                continue
            else:
                raise HTTPException(status_code=500, detail=f"Request failed after {retries} attempts: {str(e)}")


def fetch_image(url):
    try:
        with requests.Session() as session:
            response = session.get(url, timeout=30)
            response.raise_for_status()
            return Image.open(BytesIO(response.content))
    except Exception as e:
        raise HTTPException(status_code=400, detail=f"Error fetching image: {str(e)}")

def poll_for_image_result(request_id, headers):
    timeout = 60
    start_time = time.time()

    while time.time() - start_time < timeout:
        time.sleep(0.5)
        with requests.Session() as session:
            result = session.get(
                "https://api.bfl.ml/v1/get_result",
                headers=headers,
                params={"id": request_id},
                timeout=10
            ).json()

        if result["status"] == "Ready":
            return result["result"].get("sample")
        elif result["status"] == "Error":
            raise HTTPException(status_code=500, detail=f"Image generation failed: {result.get('error', 'Unknown error')}")

    raise HTTPException(status_code=500, detail="Image generation timed out.")

@app.post("/new-chat", response_model=dict)
async def new_chat():
    chat_id = generate_chat_id()
    return {"chat_id": chat_id}

@app.post("/generate-image", response_model=dict)
async def generate_image(request: ImageRequest):
    chat_history = get_chat_history(request.chat_id)
    prompt = f"""
    You are a professional assistant responsible for crafting a clear and visually compelling prompt for an image generation model. Your task is to generate a high-quality prompt for creating both the **main subject** and the **background** of the image.

    Image Specifications:
    - **Subject**: Focus on **{request.subject}**, highlighting its defining features, expressions, and textures.
    - **Style**: Emphasize the **{request.style}**, capturing its key characteristics.
    - **Background**: Create a background with **{request.background_details}** that complements and enhances the subject. Ensure it aligns with the color theme and overall composition.
    - **Camera and Lighting**:
      - Lighting: Apply **{request.lighting_conditions}**, emphasizing depth, highlights, and shadows to accentuate the subject and harmonize the background.
    - **Framing**: Use a **{request.framing_style}** to enhance the composition around both the subject and the background.
    - **Materials**: Highlight textures like **{request.material_details}**, with realistic details and natural imperfections on the subject and background.
    - **Key Elements**: Include **{request.elements}** to enrich the subject’s details and add cohesive elements to the background.
    - **Color Theme**: Follow the **{request.color_theme}** to set the mood and tone for the entire scene.
    - Negative Prompt: Avoid grainy, blurry, or deformed outputs.
    - **Text to Include in Image**: Clearly display the text **"{request.text}"** as part of the composition (e.g., on a card, badge, or banner) attached to the subject in a realistic and contextually appropriate way.
    """

    refined_prompt = llm.invoke(prompt).content.strip()
    collection.insert_one({"session_id": request.chat_id, "role": "user", "content": request.user_prompt})
    collection.insert_one({"session_id": request.chat_id, "role": "ai", "content": refined_prompt})

    headers = {
        "accept": "application/json",
        "x-key": os.getenv('BFL_API_KEY'),
        "Content-Type": "application/json"
    }

    payload = {
        "prompt": refined_prompt,
        "width": 1024,
        "height": 1024,
        "guidance_scale": 1,
        "num_inference_steps": 50,
        "max_sequence_length": 512,
    }

    response = make_request_with_retries("https://api.bfl.ml/v1/flux-pro-1.1", headers, payload)

    if "id" not in response:
        raise HTTPException(status_code=500, detail="Error generating image: ID missing from response")

    image_url = poll_for_image_result(response["id"], headers)
    image = fetch_image(image_url)
    filename = f"generated_{uuid.uuid4()}.png"
    filepath = save_image_locally(image, filename)

    return {
        "status": "Image generated successfully",
        "file_path": filepath,
        "file_url": f"/images/{filename}",
    }

@app.post("/upscale-image", response_model=dict)
async def upscale_image(request: UpscaleRequest):
    if aura_sr is None:
        raise HTTPException(status_code=500, detail="Upscaling model not initialized.")

    img = await run_in_threadpool(fetch_image, request.image_url)

    def perform_upscaling():
        upscaled_image = aura_sr.upscale_4x_overlapped(img)
        filename = f"upscaled_{uuid.uuid4()}.png"
        return save_image_locally(upscaled_image, filename)

    future = executor.submit(perform_upscaling)
    filepath = await run_in_threadpool(lambda: future.result())

    return {
        "status": "Upscaling successful",
        "file_path": filepath,
        "file_url": f"/images/{os.path.basename(filepath)}",
    }

@app.get("/")
async def root():
    return {"message": "API is up and running!"}