import gradio as gr from huggingface_hub import InferenceClient from query_data import query_data from create_database import split_text import os import shutil import logging logging.basicConfig(filename='myapp.log',format='%(asctime)s %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p') logger = logging.getLogger(__name__) """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ CHROMA_PATH = "chroma" DATA_PATH = "./data" accesstoken = os.environ['HF_TOKEN'] checkpoint = "HuggingFaceH4/zephyr-7b-beta" client = InferenceClient(checkpoint,token = accesstoken) def upload_file(file): if not os.path.exists(DATA_PATH): os.mkdir(DATA_PATH) shutil.copy(file,DATA_PATH) gr.Info("File uploading") logger.info("### Inference client: "+checkpoint) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) logger.info(messages) response = query_data(message) yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ with gr.Blocks() as demo: upload_button = gr.UploadButton("Click the button to upload") upload_button.upload(upload_file,upload_button) gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot that helps searching knowledge into scientific articles.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ) ], ) if __name__ == "__main__": demo.launch()