File size: 1,124 Bytes
6c94128
 
 
 
 
 
 
 
 
 
cd65ba5
6c94128
cd65ba5
6c94128
cd65ba5
6c94128
 
 
 
 
 
 
 
cd65ba5
 
6c94128
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import os
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_openai import OpenAIEmbeddings
from langchain_chroma import Chroma


def get_embeddings():
    """Initialize and return OpenAI embeddings."""
    return OpenAIEmbeddings(model="text-embedding-3-large")

def load_or_create_vectorstore(docs, embeddings,path):
    """Load or create a Chroma vectorstore."""
    if os.path.exists(path):
        print("Loading existing Chroma vector store from disk...")
        return Chroma(persist_directory=path, embedding_function=embeddings)
    
    # Split documents if vectorstore doesn't exist
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
    all_splits = text_splitter.split_documents(docs)
    print(f"Documents are split into {len(all_splits)} chunks from {len(docs)} documents.")
    
    # Create new vectorstore
    print("Creating new Chroma vector store...")
    vectorstore = Chroma.from_documents(documents=all_splits, embedding=embeddings, persist_directory=path)
    print(f"Vectorstore created and saved to {path}")
    return vectorstore