ragapp / create_database.py
Maurizio Dipierro
call create-database
d706505
raw
history blame
2.06 kB
# from langchain.document_loaders import DirectoryLoader
from langchain_community.document_loaders import DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import Document
# from langchain.embeddings import OpenAIEmbeddings
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
from dotenv import load_dotenv
import os
import shutil
import logging
logger = logging.getLogger(__name__)
# Load environment variables. Assumes that project contains .env file with API keys
load_dotenv()
#---- Set OpenAI API key
# Change environment variable name from "OPENAI_API_KEY" to the name given in
# your .env file.
CHROMA_PATH = "chroma"
DATA_PATH = "data/"
def main():
generate_data_store()
def generate_data_store():
logger.info("Loading documents..")
documents = load_documents()
chunks = split_text(documents)
save_to_chroma(chunks)
def load_documents():
loader = DirectoryLoader(DATA_PATH, glob="*.pdf")
documents = loader.load()
logger.info("Found {:d} documents..".format(len(documents)))
return documents
def split_text(documents: list[Document]):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1800,
chunk_overlap=100,
length_function=len,
add_start_index=True,
)
chunks = text_splitter.split_documents(documents)
print(f"Split {len(documents)} documents into {len(chunks)} chunks.")
document = chunks[10]
print(document.page_content)
print(document.metadata)
return chunks
def save_to_chroma(chunks: list[Document]):
# Clear out the database first.
if os.path.exists(CHROMA_PATH):
shutil.rmtree(CHROMA_PATH)
# Create a new DB from the documents.
db = Chroma.from_documents(
chunks, HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2"), persist_directory=CHROMA_PATH
)
db.persist()
print(f"Saved {len(chunks)} chunks to {CHROMA_PATH}.")
if __name__ == "__main__":
main()