Spaces:
No application file
No application file
Delete dataset.py
Browse files- dataset.py +0 -155
dataset.py
DELETED
@@ -1,155 +0,0 @@
|
|
1 |
-
### Create file named dataset.py
|
2 |
-
### Paste
|
3 |
-
# coding=utf-8
|
4 |
-
import json
|
5 |
-
import os
|
6 |
-
from pathlib import Path
|
7 |
-
import datasets
|
8 |
-
from PIL import Image
|
9 |
-
import pandas as pd
|
10 |
-
|
11 |
-
logger = datasets.logging.get_logger(__name__)
|
12 |
-
_CITATION = """{}"""
|
13 |
-
_DESCRIPTION = """Discharge Summary"""
|
14 |
-
|
15 |
-
|
16 |
-
def load_image(image_path):
|
17 |
-
image = Image.open(image_path)
|
18 |
-
w, h = image.size
|
19 |
-
return image, (w, h)
|
20 |
-
|
21 |
-
def normalize_bbox(bbox, size):
|
22 |
-
return [
|
23 |
-
int(1000 * bbox[0] / size[0]),
|
24 |
-
int(1000 * bbox[1] / size[1]),
|
25 |
-
int(1000 * bbox[2] / size[0]),
|
26 |
-
int(1000 * bbox[3] / size[1]),
|
27 |
-
]
|
28 |
-
|
29 |
-
|
30 |
-
class SroieConfig(datasets.BuilderConfig):
|
31 |
-
"""BuilderConfig for SROIE"""
|
32 |
-
def __init__(self, **kwargs):
|
33 |
-
"""BuilderConfig for SROIE.
|
34 |
-
Args:
|
35 |
-
**kwargs: keyword arguments forwarded to super.
|
36 |
-
"""
|
37 |
-
super(SroieConfig, self).__init__(**kwargs)
|
38 |
-
|
39 |
-
|
40 |
-
class Sroie(datasets.GeneratorBasedBuilder):
|
41 |
-
BUILDER_CONFIGS = [
|
42 |
-
SroieConfig(name="discharge", version=datasets.Version("1.0.0"), description="Discharge summary dataset"),
|
43 |
-
]
|
44 |
-
|
45 |
-
def _info(self):
|
46 |
-
return datasets.DatasetInfo(
|
47 |
-
description=_DESCRIPTION,
|
48 |
-
features=datasets.Features(
|
49 |
-
{
|
50 |
-
"id": datasets.Value("string"),
|
51 |
-
"words": datasets.Sequence(datasets.Value("string")),
|
52 |
-
"bboxes": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
|
53 |
-
"ner_tags": datasets.Sequence(
|
54 |
-
datasets.features.ClassLabel(
|
55 |
-
names=['others',
|
56 |
-
'produttore_key',
|
57 |
-
'produttore_value',
|
58 |
-
'cliente_key',
|
59 |
-
'cliente_value',
|
60 |
-
'unitloc_key',
|
61 |
-
'unitloc_value',
|
62 |
-
'operatore_key',
|
63 |
-
'operatore_value',
|
64 |
-
'referente_key',
|
65 |
-
'referente_value',
|
66 |
-
'cfproduttore_key',
|
67 |
-
'cfproduttore_value',
|
68 |
-
'telefono_key',
|
69 |
-
'telefono_value',
|
70 |
-
'emailcliente_key',
|
71 |
-
'emailcliente_value',
|
72 |
-
'datarichiesta_key',
|
73 |
-
'datarichiesta_value',
|
74 |
-
'orariorichiesta_key',
|
75 |
-
'orariorichiesta_value',
|
76 |
-
'emailproduttore_key',
|
77 |
-
'emailproduttore_value',
|
78 |
-
'mattina_key',
|
79 |
-
'mattina_value',
|
80 |
-
'pomeriggio_key',
|
81 |
-
'pomeriggio_value',
|
82 |
-
'cer_key',
|
83 |
-
'cer_value',
|
84 |
-
'descrizione_key',
|
85 |
-
'descrizione_value',
|
86 |
-
'sf_key',
|
87 |
-
'sf_value',
|
88 |
-
'classpericolo_key',
|
89 |
-
'classpericolo_value',
|
90 |
-
'destino_key',
|
91 |
-
'destino_value',
|
92 |
-
'confezionamento_key',
|
93 |
-
'confezionamento_value',
|
94 |
-
'destinazione_key',
|
95 |
-
'destinazione_value'
|
96 |
-
]
|
97 |
-
)
|
98 |
-
),
|
99 |
-
#"image": datasets.Array3D(shape=(3, 224, 224), dtype="uint8"),
|
100 |
-
"image_path": datasets.Value("string"),
|
101 |
-
}
|
102 |
-
),
|
103 |
-
supervised_keys=None,
|
104 |
-
citation=_CITATION,
|
105 |
-
homepage="",
|
106 |
-
)
|
107 |
-
|
108 |
-
def _split_generators(self, dl_manager):
|
109 |
-
"""Returns SplitGenerators."""
|
110 |
-
"""Uses local files located with data_dir"""
|
111 |
-
#downloaded_file = dl_manager.download_and_extract(_URLS)
|
112 |
-
# move files from the second URL together with files from the first one.
|
113 |
-
dest = Path('dataset')
|
114 |
-
|
115 |
-
return [
|
116 |
-
datasets.SplitGenerator(
|
117 |
-
name=datasets.Split.TRAIN, gen_kwargs={"filepath": dest/"train"}
|
118 |
-
),
|
119 |
-
datasets.SplitGenerator(
|
120 |
-
name=datasets.Split.TEST, gen_kwargs={"filepath": dest/"test"}
|
121 |
-
),
|
122 |
-
]
|
123 |
-
|
124 |
-
def _generate_examples(self, filepath):
|
125 |
-
|
126 |
-
logger.info("⏳ Generating examples from = %s", filepath)
|
127 |
-
ann_dir = os.path.join(filepath, "annotation_dir")
|
128 |
-
img_dir = os.path.join(filepath, "img_dir")
|
129 |
-
|
130 |
-
for guid, fname in enumerate(sorted(os.listdir(img_dir))):
|
131 |
-
|
132 |
-
name, ext = os.path.splitext(fname)
|
133 |
-
file_path = os.path.join(ann_dir, name + ".csv")
|
134 |
-
|
135 |
-
|
136 |
-
df = pd.read_csv(file_path)
|
137 |
-
|
138 |
-
image_path = os.path.join(img_dir, fname)
|
139 |
-
|
140 |
-
image, size = load_image(image_path)
|
141 |
-
|
142 |
-
boxes = [[xmin, ymin, xmax, ymax] for xmin, ymin, xmax, ymax in zip(df['left'],df['top'],df['left']+df['width'],df['top']+df['height'])]
|
143 |
-
text = [i for i in df['text']]
|
144 |
-
label = [i for i in df['label']]
|
145 |
-
|
146 |
-
boxes = [normalize_bbox(box, size) for box in boxes]
|
147 |
-
|
148 |
-
print(image_path)
|
149 |
-
for i in boxes:
|
150 |
-
for j in i:
|
151 |
-
if j>1000:
|
152 |
-
print(j)
|
153 |
-
pass
|
154 |
-
|
155 |
-
yield guid, {"id": str(guid), "words": text, "bboxes": boxes, "ner_tags": label, "image_path": image_path}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|