GianJSX's picture
Upload 2 files
0286b80
import io
import os
from openai import OpenAI
from langchain.tools import StructuredTool, Tool
from io import BytesIO
import requests
import json
from io import BytesIO
import base64
import chainlit as cl
def get_image_name():
"""
We need to keep track of images we generate, so we can reference them later
and display them correctly to our users.
"""
image_count = cl.user_session.get("image_count")
if image_count is None:
image_count = 0
else:
image_count += 1
cl.user_session.set("image_count", image_count)
return f"image-{image_count}"
def _generate_image(prompt: str):
"""
This function is used to generate an image from a text prompt using
DALL-E 3.
We use the OpenAI API to generate the image, and then store it in our
user session so we can reference it later.
"""
client = OpenAI(api_key=cl.user_session.get("api_key"))
response = client.images.generate(
model="dall-e-3",
prompt=prompt,
size="1024x1024",
quality="standard",
n=1,
)
image_payload = requests.get(response.data[0].url, stream=True)
image_bytes = BytesIO(image_payload.content)
print(type(image_bytes))
name = get_image_name()
cl.user_session.set(name, image_bytes.getvalue())
cl.user_session.set("generated_image", name)
return name
def generate_image(prompt: str):
image_name = _generate_image(prompt)
return f"Here is {image_name}."
# this is our tool - which is what allows our agent to generate images in the first place!
# the `description` field is of utmost imporance as it is what the LLM "brain" uses to determine
# which tool to use for a given input.
generate_image_format = '{{"prompt": "prompt"}}'
generate_image_tool = Tool.from_function(
func=generate_image,
name="GenerateImage",
description=f"Useful to create an image from a text prompt. Input should be a single string strictly in the following JSON format: {generate_image_format}",
return_direct=True,
)
def gpt_vision_call(image_id: str):
#cl.user_session.set("image_id", image_id)
print("image_id", image_id)
client = OpenAI(api_key=cl.user_session.get("api_key"))
image_history = cl.user_session.get("image_history")
stream = client.chat.completions.create(
model="gpt-4-vision-preview",
messages=image_history,
max_tokens=350,
stream=False,
)
return stream
def handle_image_history(msg):
image_history = cl.user_session.get("image_history")
image_base64 = None
image_base64 = process_images(msg)
if image_base64:
# add the image to the image history
image_history.append(
{
"role": "user",
"content": [
{"type": "text", "text": msg.content},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{image_base64}",
"detail": "low"
}
},
],
}
)
cl.user_session.set("image_history", image_history)
def process_images(msg: cl.Message):
# Processing images exclusively
images = [file for file in msg.elements if "image" in file.mime]
# Accessing the bytes of a specific image
image_bytes = images[0].content # take the first image just for demo purposes
# we need base64 encoded image
image_base64 = base64.b64encode(image_bytes).decode('utf-8')
return image_base64
describe_image_format = '{{"image_id": "image_id"}}'
describe_image_tool = Tool.from_function(
func=gpt_vision_call,
name="DescribeImage",
description=f"Useful to describe an image. Input should be a single string strictly in the following JSON format: {describe_image_format}",
return_direct=False,
)