Spaces:
Sleeping
Sleeping
File size: 4,206 Bytes
0e7de7e 1556762 0e7de7e 1556762 0e7de7e 1556762 0e7de7e 1556762 0e7de7e 1556762 0e7de7e 1556762 0e7de7e 1556762 0e7de7e 1556762 0e7de7e 1556762 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import streamlit as st
import numpy as np
from PIL import Image
import requests
import ModelClass
from glob import glob
import torch
import torch.nn as nn
@st.cache_resource
def load_model():
return ModelClass.get_model()
@st.cache_data
def get_images():
l = glob('./inputs/*')
l = {i.split('/')[-1]: i for i in l}
return l
def infer(img):
image = img.convert('RGB')
image = ModelClass.get_transform()(image)
image = image.unsqueeze(dim=0)
model = load_model()
model.eval()
with torch.no_grad():
out = model(image)
out = nn.Softmax()(out).squeeze()
return out
st.set_page_config(
page_title="Whale Identification",
page_icon="🧊",
layout="centered",
initial_sidebar_state="expanded",
menu_items={
'Get Help': 'https://www.extremelycoolapp.com/help',
'Report a bug': "https://www.extremelycoolapp.com/bug",
'About': """
# This is a header. This is an *extremely* cool app!
How how are you doin.
---
I am fine
<style>
</style>
"""
}
)
# fix sidebar
st.markdown("""
<style>
.css-vk3wp9 {
background-color: rgb(255 255 255);
}
.css-18l0hbk {
padding: 0.34rem 1.2rem !important;
margin: 0.125rem 2rem;
}
.css-nziaof {
padding: 0.34rem 1.2rem !important;
margin: 0.125rem 2rem;
background-color: rgb(181 197 227 / 18%) !important;
}
.css-1y4p8pa {
padding: 3rem 1rem 10rem;
max-width: 58rem;
}
</style>
""", unsafe_allow_html=True
)
hide_st_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
header {visibility: hidden;}
</style>
"""
#st.markdown(hide_st_style, unsafe_allow_html=True)
def predict(image):
# Dummy prediction
classes = ['cat', 'dog']
prediction = np.random.rand(len(classes))
prediction /= np.sum(prediction)
return dict(zip(classes, prediction))
def app():
st.title('ActionNet')
st.markdown("[](https://wandb.ai/<username>/<project_name>?workspace=user-<username>)")
st.markdown('This project aims to identify whales and dolphins by their unique characteristics. It can help researchers understand their behavior, population dynamics, and migration patterns. This project can aid researchers in identifying these marine mammals, providing valuable data for conservation efforts. [[Source Code]](https://kaggle.com/)')
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
test_images = get_images()
test_image = st.selectbox('Or choose a test image', list(test_images.keys()))
st.subheader('Selected Image')
left_column, right_column = st.columns([1.5, 2.5], gap="medium")
with left_column:
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.image(image, use_column_width=True)
else:
image_url = test_images[test_image]
image = Image.open(image_url)
st.image(image, use_column_width=True)
if st.button('✨ Get prediction from AI', type='primary'):
spacer = st.empty()
res = infer(image)
res = torch.argmax(res)
cname = ModelClass.get_class(res)
st.write(f'{cname}')
prediction = predict(image)
right_column.subheader('Results')
for class_name, class_probability in prediction.items():
right_column.write(f'{class_name}: {class_probability:.2%}')
right_column.progress(class_probability)
st.markdown("---")
st.markdown("Built by [Shamim Ahamed](https://your-portfolio-website.com/). Data provided by [Kaggle](https://www.kaggle.com/c/)")
app() |