ActionNet / ModelClass.py
DataRaptor's picture
Upload 64 files
845eb37
raw
history blame
2.18 kB
import torch
from torch import nn
from torchvision import transforms, models
class ActionClassifier(nn.Module):
def __init__(self, ntargets):
super().__init__()
resnet = models.resnet50(pretrained=True, progress=True)
modules = list(resnet.children())[:-1] # delete last layer
self.resnet = nn.Sequential(*modules)
for param in self.resnet.parameters():
param.requires_grad = False
self.fc = nn.Sequential(
nn.Flatten(),
nn.BatchNorm1d(resnet.fc.in_features),
nn.Dropout(0.2),
nn.Linear(resnet.fc.in_features, 256),
nn.ReLU(),
nn.BatchNorm1d(256),
nn.Dropout(0.2),
nn.Linear(256, ntargets)
)
def forward(self, x):
x = self.resnet(x)
x = self.fc(x)
return x
def get_transform():
transform = transforms.Compose([
transforms.Resize([224, 244]),
transforms.ToTensor(),
# std multiply by 255 to convert img of [0, 255]
# to img of [0, 1]
transforms.Normalize((0.485, 0.456, 0.406),
(0.229*255, 0.224*255, 0.225*255))]
)
return transform
def get_model():
model = ActionClassifier(15)
model.load_state_dict(torch.load('./classifier_weights.pth', map_location=torch.device('cpu')))
return model
def get_class(index):
ind2cat = [
'calling',
'clapping',
'cycling',
'dancing',
'drinking',
'eating',
'fighting',
'hugging',
'laughing',
'listening_to_music',
'running',
'sitting',
'sleeping',
'texting',
'using_laptop'
]
return ind2cat[index]
# img = Image.open('./inputs/Image_102.jpg').convert('RGB')
# #print(transform(img))
# img = transform(img)
# img = img.unsqueeze(dim=0)
# print(img.shape)
# model.eval()
# with torch.no_grad():
# out = model(img)
# out = nn.Softmax()(out).squeeze()
# print(out.shape)
# res = torch.argmax(out)
# print(ind2cat[res])