Spaces:
Sleeping
Sleeping
from torch import nn | |
from transformers import AutoConfig, AutoModel, AutoTokenizer | |
import torch | |
from torch.utils.data import Dataset | |
class MeanPooling(nn.Module): | |
def __init__(self): | |
super(MeanPooling, self).__init__() | |
def forward(self, last_hidden_state, attention_mask): | |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(last_hidden_state.size()).float() | |
sum_embeddings = torch.sum(last_hidden_state * input_mask_expanded, 1) | |
sum_mask = input_mask_expanded.sum(1) | |
sum_mask = torch.clamp(sum_mask, min=1e-9) | |
mean_embeddings = sum_embeddings / sum_mask | |
return mean_embeddings | |
class MeanPoolingLayer(nn.Module): | |
def __init__(self, input_size, target_size): | |
super(MeanPoolingLayer, self).__init__() | |
self.pool = MeanPooling() | |
self.fc = nn.Linear(input_size, target_size) | |
def forward(self, inputs, mask): | |
last_hidden_states = inputs[0] | |
feature = self.pool(last_hidden_states, mask) | |
outputs = self.fc(feature) | |
return outputs | |
def weight_init_normal(module, model): | |
if isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=model.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=model.config.initializer_range) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
class USPPPMModel(nn.Module): | |
def __init__(self, backbone): | |
super(USPPPMModel, self).__init__() | |
self.config = AutoConfig.from_pretrained(backbone, output_hidden_states=True) | |
self.model = AutoModel.from_pretrained(backbone, config=self.config) | |
self.head = MeanPoolingLayer(768,1) | |
self.tokenizer = AutoTokenizer.from_pretrained(backbone); | |
# sectoks = ['[CTG]', '[CTX]', '[ANC]', '[TGT]'] | |
# self.tokenizer.add_special_tokens({'additional_special_tokens': sectoks}) | |
# self.model.resize_token_embeddings(len(self.tokenizer)) | |
def _init_weights(self, layer): | |
for module in layer.modules(): | |
init_fn = weight_init_normal | |
init_fn(module, self) | |
# print(type(module)) | |
def forward(self, inputs): | |
outputs = self.model(**inputs) | |
outputs = self.head(outputs, inputs['attention_mask']) | |
return outputs | |
table = """ | |
A: Human Necessities | |
B: Operations and Transport | |
C: Chemistry and Metallurgy | |
D: Textiles | |
E: Fixed Constructions | |
F: Mechanical Engineering | |
G: Physics | |
H: Electricity | |
Y: Emerging Cross-Sectional Technologies | |
""" | |
splits = [i for i in table.split('\n') if i != ''] | |
table = {e.split(': ')[0]: e.split(': ')[1] for e in splits} | |
class USPPPMDataset(Dataset): | |
def __init__(self, tokenizer, max_length): | |
self.tokenizer = tokenizer | |
self.max_length = max_length | |
def __len__(self): return 0 | |
def __getitem__(self, x): | |
score = x['label'] | |
sep = '' + self.tokenizer.sep_token + '' | |
s = x['anchor'] + sep + x['target'] + sep + x['title'] | |
inputs = self.tokenizer( | |
s, add_special_tokens=True, | |
max_length=self.max_length, padding='max_length', | |
truncation=True, | |
return_offsets_mapping=False | |
) | |
for k, v in inputs.items(): inputs[k] = torch.tensor(v, dtype=torch.long).unsqueeze(dim=0) | |
label = torch.tensor(score, dtype=torch.float) | |
return inputs, label | |
if __name__ == '__main__': | |
model = USPPPMModel('microsoft/deberta-v3-small') | |
model.load_state_dict(torch.load('model_weights.pth', map_location=torch.device('cpu'))) | |
model.eval() | |
ds = USPPPMDataset(model.tokenizer, 133) | |
d = { | |
'anchor': 'sprayed', | |
'target': 'thermal sprayed coating', | |
'title': 'building', | |
'label': 0 | |
} | |
inp = ds[d] | |
x = inp[0] | |
with torch.no_grad(): | |
y = model(x) | |
print('y:', y) | |