# -*- coding: utf-8 -*-
"""
Created on Fri Aug 18 08:01:41 2023
@author: Shamim Ahamed, RE AIMS Lab
"""
import streamlit as st
import pandas as pd
from tqdm.cli import tqdm
import numpy as np
import requests
import pandas as pd
from tqdm import tqdm
def get_user_data(api, parameters):
response = requests.post(f"{api}", json=parameters)
if response.status_code == 200:
return response.json()
else:
print(f"ERROR: {response.status_code}")
return None
st.set_page_config(page_title="SuSastho.AI Chatbot", page_icon="đ", layout='wide')
st.markdown("""
""", unsafe_allow_html=True)
st.markdown("""
""",unsafe_allow_html=True)
model_names = {
'BLOOM 7B': 'bloom-7b',
}
with st.sidebar:
st.title("SuSastho.AI - ChatBot đ")
model_name = model_names[st.selectbox('Model', list(model_names.keys()), 0)]
ctx_checker_tmp = st.slider('Context Checker Sensitivity', min_value=0.001, max_value=1.0, value=0.008, step=0.001)
lm_tmp = st.slider('Language Model Sensitivity', min_value=0.001, max_value=1.0, value=0.1, step=0.001)
endpoint = st.secrets["LLMEndpoint"]
def main():
if model_name == 'None':
st.markdown('##### Please select a model.')
return
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = [{"role": 'assistant', "content": 'āĻšā§āĻ¯āĻžāĻ˛ā§! āĻāĻŽāĻŋ āĻāĻāĻāĻŋ āĻāĻāĻ āĻ
ā§āĻ¯āĻžāĻ¸āĻŋāĻ¸ā§āĻā§āĻ¯āĻžāĻ¨ā§āĻāĨ¤ āĻā§āĻāĻžāĻŦā§ āĻ¸āĻžāĻšāĻžāĻ¯ā§āĻ¯ āĻāĻ°āĻ¤ā§ āĻĒāĻžāĻ°āĻŋ? đ'}]
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Accept user input
if prompt := st.chat_input("āĻāĻāĻžāĻ¨ā§ āĻŽā§āĻ¸ā§āĻ āĻ˛āĻŋāĻā§āĻ¨"):
# Display user message in chat message container
with st.chat_message("user"):
st.markdown(prompt)
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
## Get context
params = {
"chat_history": [
{"content": prompt}
],
"model": "bloom-7b",
"mode": "specific",
"config": {
"ctx_checker_tmp": ctx_checker_tmp,
"lm_tmp": lm_tmp,
}
}
resp = get_user_data(endpoint, params)
if resp == None:
st.markdown('#### INTERNAL ERROR')
return
response = resp['data']['responses'][0]['content']
context = resp['data']['logs']['content']['retrival_model']['matched_doc']
clen = len(context)
context = '\n\n===============================\n\n'.join(context)
response = f'###### Config: Context Checker Value: {ctx_checker_tmp}, LM Value: {lm_tmp}\n\n##### Matched Context: {clen}\n{context}\n\n##### Response:\n{response}'
# Display assistant response in chat message container
with st.chat_message("assistant", avatar=None):
st.markdown(response)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": response})
main()