File size: 5,180 Bytes
f8a1225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import torch
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
import pdb

from torch.nn import functional as F
from torch.nn import init


'''

'''


class Concat_embed4(nn.Module):

    def __init__(self, embed_dim, projected_embed_dim):
        super(Concat_embed4, self).__init__()
        self.projection = nn.Sequential(
            nn.Linear(in_features=embed_dim, out_features=embed_dim),
            nn.BatchNorm1d(num_features=embed_dim),
            nn.LeakyReLU(negative_slope=0.2, inplace=True),

            nn.Linear(in_features=embed_dim, out_features=embed_dim),
            nn.BatchNorm1d(num_features=embed_dim),
            nn.LeakyReLU(negative_slope=0.2, inplace=True),

            nn.Linear(in_features=embed_dim, out_features=projected_embed_dim),
            nn.LeakyReLU(negative_slope=0.2, inplace=True),
        )

    def forward(self, inp, embed):
        projected_embed = self.projection(embed)
        replicated_embed = projected_embed.repeat(4, 4, 1, 1).permute(2,  3, 0, 1)
        hidden_concat = torch.cat([inp, replicated_embed], 1)
        return hidden_concat


class generator(nn.Module):
    def __init__(self):
        super(generator, self).__init__()
        self.image_size = 64
        self.num_channels = 3
        self.noise_dim = 100
        self.embed_dim = 768
        self.projected_embed_dim = 128
        self.latent_dim = self.noise_dim + self.projected_embed_dim
        self.ngf = 64

        self.projection = nn.Sequential(
            nn.Linear(in_features=self.embed_dim, out_features=self.embed_dim),
            nn.BatchNorm1d(num_features=self.embed_dim),
            nn.LeakyReLU(negative_slope=0.2, inplace=True),

            nn.Linear(in_features=self.embed_dim, out_features=self.embed_dim),
            nn.BatchNorm1d(num_features=self.embed_dim),
            nn.LeakyReLU(negative_slope=0.2, inplace=True),

            nn.Linear(in_features=self.embed_dim, out_features=self.projected_embed_dim),
            nn.BatchNorm1d(num_features=self.projected_embed_dim),
            nn.LeakyReLU(negative_slope=0.2, inplace=True)
        )

        self.netG = nn.ModuleList([
            nn.ConvTranspose2d(self.latent_dim, self.ngf * 8, 4, 1, 0, bias=False),
            nn.BatchNorm2d(self.ngf * 8),
            nn.ReLU(True),


            # state size. (ngf*8) x 4 x 4
            nn.ConvTranspose2d(self.ngf * 8, self.ngf * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(self.ngf * 4),
            nn.ReLU(True),

            # state size. (ngf*4) x 8 x 8
            nn.ConvTranspose2d(self.ngf * 4, self.ngf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(self.ngf * 2),
            nn.ReLU(True),

            # state size. (ngf*2) x 16 x 16
            nn.ConvTranspose2d(self.ngf * 2, self.ngf, 4, 2, 1, bias=False),
            nn.BatchNorm2d(self.ngf),
            nn.ReLU(True),

            # state size. (ngf) x 32 x 32
            nn.ConvTranspose2d(self.ngf, self.num_channels, 4, 2, 1, bias=False),
            nn.Tanh()
            # state size. (num_channels) x 64 x 64
        ])

    def forward(self, embed_vector, z):
        projected_embed = self.projection(embed_vector)
        out = torch.cat([projected_embed.unsqueeze(2).unsqueeze(3), z], 1)
        for m in self.netG:
            out = m(out)
        return out


class discriminator(nn.Module):
    def __init__(self):
        super(discriminator, self).__init__()
        self.image_size = 64
        self.num_channels = 3
        self.embed_dim = 768
        self.projected_embed_dim = 128
        self.ndf = 64
        self.B_dim = 128
        self.C_dim = 16

        self.netD_1 = nn.Sequential(
            # input is (nc) x 64 x 64
            nn.Conv2d(self.num_channels, self.ndf, 4, 2, 1, bias=False),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf) x 32 x 32

            # SelfAttention(self.ndf),
            nn.Conv2d(self.ndf, self.ndf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(self.ndf * 2),
            nn.LeakyReLU(0.2, inplace=True),

            # state size. (ndf*2) x 16 x 16

            nn.Conv2d(self.ndf * 2, self.ndf * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(self.ndf * 4),
            nn.LeakyReLU(0.2, inplace=True),

            # state size. (ndf*4) x 8 x 8
            nn.Conv2d(self.ndf * 4, self.ndf * 8, 4, 2, 1, bias=False),
            nn.BatchNorm2d(self.ndf * 8),
            nn.LeakyReLU(0.2, inplace=True),
        )

        self.projector = Concat_embed4(self.embed_dim, self.projected_embed_dim)

        self.netD_2 = nn.Sequential(
            # state size. (ndf*8) x 4 x 4
            nn.Conv2d(self.ndf * 8 + self.projected_embed_dim,
                      self.ndf * 8, 1, 1, 0, bias=False),
            nn.BatchNorm2d(self.ndf * 8),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(self.ndf * 8, 1, 4, 1, 0, bias=False),
            nn.Sigmoid()
        )

    def forward(self, inp, embed):
        x_intermediate = self.netD_1(inp)
        x = self.projector(x_intermediate, embed)
        x = self.netD_2(x)

        return x.view(-1, 1).squeeze(1), x_intermediate